
Filling Out the DD Rule Class
The ability to define Schematron rules gives you another mechanism for validating labels through
defined dependencies and contingencies over and above what the XSD Schema standard provides.
For example, you can define a rule that requires that any label that contains ClassA also
contains ClassB, or that all calibrated products contain a class with instrument calibration
parameters.

Note: There are additional subclasses defined in the PDS4 schema for this class, but these are left-
over from early prototyping efforts and are ignored by the process that analyzes this class content
and produces the Schematron rules in the output. They will be removed in later releases and thus
are not documented here.

In the following descriptions, the sch: prefix is used to identify elements from the Schematron
namespace as they appear in the output Schematron file, and the ex: prefix is used to indicate the
namespace being defined by the Ingest_LDD input file (which would be replaced by the
actual namespace_id value in practice).

Before You Start
A few things to consider:

• Schematron does not recognize a default namespace, so make sure that all attributes
and classes that appear in anywhere in the <DD_Rule> definitions have the appropriate
namespace abbreviation prepended. This is where you will need to use
the <namespace_id> value defined at the top of the input file to reference your own
classes and attributes. Use the "pds:" prefix for anything you might be referencing from
the core namespace.

• PDS4 Schematron files use XPath 2.0 to define context paths and tests. If you are
planning to do anything non-trivial with the <DD_Rule> class, a basic knowledge
of XPath 2.0 is both required. Some of the most common examples are included in the
example file set (File:LDDTool 1E00 examples.zip) to get you started, but you should
have at least some minimal knowledge of the syntax of XPath specifications and
Schematron statements before proceeding, or the terminology can be rather opaque and
any errors difficult to interpret.

• There is much more flexibility in Schematron itself than there is in these classes. Keep
your rules very simple and very explicit, and this class will do the job. Anything more
intricate will require hand-editing the output Schematron, or requesting an upgrade to
LDDTool - which you can do through your PDS contact. (Please provide details and
examples when you do.)

• Each <DD_Rule> class you include in your dictionary will result in one
Schematron <sch:pattern> definition in the output file. All rules that need to be tested
within that context must be defined in a single <DD_Rule> class, or the output schema
will likely not perform as expected. LDDTool does not check for duplication of context, so
author beware.

<local_identifier>
REQUIRED

This value provides a handle for this rule within the dictionary input file. It must be unique within
the Ingest_LDD file.

https://pds.nasa.gov/datastandards/training/documents/LDDTool_1E00_examples.zip

<rule_context>
REQUIRED

The value of this attribute is the Xpath path defining the context (that is, the specific class or attribute
you want to test) for the rule. Specifically, it provides the value of the context= XML attribute of the
Schematron <sch:rule> element. It needs to be specific enough to identify the correct context for the
test to be executed. For example, if you have multiple instances of
the <pds:Internal_Reference> class including in your dictionary, you will need to provide
different <pds:reference_type> values for each. To distinguish those different contexts, you will have
to include enough path information to identify each occurrence
of <pds:Internal_Reference> uniquely. Typically, this would mean including the class that contains
the <pds:Internal_Reference> class in the path.

The best and highly recommended practice is to group all the tests you want to perform on a
particular context under a single <DD_Rule> for that context. This grouping is required in the output
for proper Schematron validation, but LDDTool will group rules with the same <rule_context> in the
output Schematron file even if they are defined in separate <DD_Rule> classes. Grouping the rules
in your Ingest_LDD file makes maintenance and trouble-shooting easier, and lessens the chance
that you will define the same (or nearly the same) rule twice.

<rule_assign>
OPTIONAL

This attribute lets you create a variable assignment within your rule context. This variable will be
available for use in your subsequent <DD_Rule_Statement> attributes as appropriate. The value of
this attribute is the attribute definitions for a Schematron sch:let element, so do not include "let" in
your value. Here's a very simple example:

Including:
<rule_assign>name="good_val" value="3"</rule_assign>

in your Ingest_LDD file will result in this line:
<sch:let name="good_val" value="3"/>

in the corresponding context section of your output Schematron file.

You can then use the variable reference $good_val in any <rule_test> defined within
this <DD_Rule> class. The value is not required to be a constant - it can be any valid XPath
2.0 expression and can reference attributes from the schema file. You may repeat this attribute if you
have more than one variable to define. Note, however, that variables are not translated in the
message reported out - so using your variable in the <rule_message> text will not have the expected
result.

Note that most dictionary writers will never have a reason to use this capability - standard values and
constant values should be defined using the options provided by the <DD_Attribute>
and <DD_Class> templates. But in some complex mission dictionary scenarios it might be a useful
technique to have available, so here it is.

<DD_Rule_Statement>
REQUIRED

This class defines the various bits and pieces that go into a
single <sch:assert> or <sch:report> element in the output Schematron file for the context defined by

the containing <DD_Rule> class. Repeat this class if you have more than one rule to define within
the context defined by that <rule_context>.

<rule_type>
REQUIRED

This value indicates the type of test to be defined. There are only two defined values you should ever
use:

An assert statement does nothing if the associated <rule_test> evaluates to true. If the test is not
true, the <rule_message> is displayed. Assert statements are usually used for error-detection.

A report statement does the opposite - it displays the <rule_message> text only if the <rule_test> is
true. Report statements are more often used for information-gathering (to report things that are valid,
but interesting).

<rule_test>
REQUIRED

This attribute contains the text that will go into the test= XML attribute of
the <sch:assert> or <sch:report> element being defined. Schematron does not recognize a default
namespace, so make sure that all attributes and classes that appear in your test (or anywhere in
your rule) have the appropriate namespace abbreviation prepended. Use the <namespace_id> value
defined at the top of the input file to reference your own classes and attributes; use the "pds:" prefix
for anything you might be referencing from the core namespace.

The test string must use XPath 2.0 syntax. It's beyond the scope of this wiki to cover XPath syntax,
but you can find some of the most common examples illustrated in the sample files File:LDDTool
1E00 examples.zip provided on this wiki.

<rule_message>
REQUIRED

This attribute provides the message that will be displayed when the
associated sch:assert or sch:report is triggered by the test. This the message that your dictionary
users - the ones creating and validating labels that use your dictionary classes - will see, so please
try to make it as helpful as possible.

<rule_description>
OPTIONAL

Use this free-text field to provide a human-readable explanation of what is being tested and why, if it
is not already clear from the rule_message text. This appears to be entirely internal documentation -
the description is not transferred to the output Schematron file produced by LDDTool.

Assert - Creates an <sch:assert> element within the <sch:rule>.

Report - Creates a <sch:report> element within the <sch:rule>

https://pds.nasa.gov/datastandards/training/documents/LDDTool_1E00_examples.zip
https://pds.nasa.gov/datastandards/training/documents/LDDTool_1E00_examples.zip

