
Installing and Configuring Validate Tool 

Validate Tool Functions 
The primary functions provided by Validate Tool as of this writing are schematic validation (against 
both XSD and Schematron files), and referential integrity checking of collections and bundles (i.e., 
ensuring all member products are present and complete, and no non-member products are present). 
Capabilities still in development include the ability to validate data objects (like images and tables) 
against their label definitions. 

Validate Tool can also, on request, perform a checksum verification as part of the validation process. 

Goal 
Our goal for this page is to start with the Validate Tool installation package and end up with the tool 
installed for general use on the target system. "General use" in this case means you can invoke the 
tool in any directory where you happen to be working with a command line that, in its simplest form, 
looks something like this: 

     % validate product.xml -r report.txt 

Note that there is an installation document with a more terse installation process description included 
in the documentation provided with the code. Those experienced with installing Java-based software 
on their system may well prefer to reference that. This page is intended for those who are unfamiliar 
with that process and would like a bit of additional detail and guidance. 

Part List 
To run the Validate Tool locally, you'll need: 

• The Validate Tool package. The package is available as either a ZIP file or a compressed 
TAR file from the PDS Validate GitHub page, https://nasa-pds.github.io/validate/. Either 
format will do. 

• Java 6 (1.6) or later. Type java -version at your command line to what version of Java, if any, 
you have available. If you don't have Java installed, or want to work with a later version, 
you'll usually need administrator privileges on your computer to download and install a newer 
version from the Oracle web site https://java.com/download. Java 7 (1.7) and later includes a 
handy feature that will help with configuration later on, so if you are still running a (relatively) 
ancient version, you now have one more reason to upgrade. 

• A text editor that can handle simple text files for batch processing without filling them up 
with stupid control characters. On linux-based systems, things like vi, pico, or gedit will work; 
from the Windows DOS command line, you can use the edit command on older systems 
(pre-Windows 7), or Notepad (which can be invoked from the Windows command line 
as notepad) on newer ones. 

General Procedure 
Here's the general procedure for setting up the tool: 

1. Unpack the Validate Tool package. 
2. Move the directories you need to run the tool to a permanent location. 

https://nasa-pds.github.io/validate/
https://java.com/download


3. Edit the wrapper script for the local environment. 
4. Install the wrapper script. 
5. Test the installation. 
6. Rejoice in the knowledge of a job well done. 

Procedure 
Unpack the Validate Tool Package 
Use a standard ZIP tool (unzip on linux-based systems; the Extract All option in Windows Explorer) 
to extract the files from the ZIP package. For the tar file, use the z option to uncompress while you 
extract on a linux system. You should end up with a directory having a name that starts with validate-
 and ends with the internal version number of the tool. As of this writing, the latest version of the tool 
is 1.11.0, so the delivery package unpacks into a directory called validate-1.11.0. You can unpack it 
anywhere - we'll move the directory tree we need to a new home once we're picked one out. If you 
haven't inspected previous Validate Tool delivery packages, you should probably take a few minutes 
to familiarize yourself with the contents. 

Here's what you'll find in the unpacked directory: 

Executables 
The executable elements of the package include: 

bin/ 
You'll only need one of the two files from this directory, depending on your system type. We'll 
be modifying the appropriate script to work on your local system. 
lib/ 
This directory contains the Java archive files comprising the Validate Tool code. 

Documentation 
The doc/ subdirectory contains an HTML directory tree. Point your browser to the index.html file to 
see it in its intended format. 

Peanuts 
Like packing peanuts, these files are included in the ZIP but are not directly involved in program 
operation: 

• LICENSE.txt : Standard boilerplate license (JPL employees produced this code, and JPL is 
part of the California Institute of Technology) 

• README.txt : This file just directs you to the doc/index.html file. 

Install the Executable and Support Directories 
Unless you are seriously hardcore about running Java applications, you will be running Validate by 
invoking a wrapper script (or batch file). This script sets up some environment variables and then 
invokes Java with the appropriate options and arguments for executing the validate ".jar" file with 
options and arguments passed on by the wrapper script. 

Note: The Java code not only expects to find the environment variables set by the wrapper 
script, it also expects to be running from a bin/ directory that is adjacent to the lib/ directory 
containing the jar files - so that aspect of the directory tree must be preserved for the code to 



execute successfully. There are various ways of accomplishing that in different operating 
environments if you know what you are doing. This page describes one simple way to achieve 
that for non-experts. 

Choosing an Installation Location 
On linux-based multi-user systems, you can install Validate for general use by all users either by 
installing into one of the standard system locations (/usr/share, for example), or in shared disk 
space. If the latter, users wanting to execute Validate will likely have to add the appropriate directory 
location to the $PATH setting. Alternately, you as a single, non-super user can install it into your 
own ~/bin/ directory. Note that if you haven't created or used a personal ~/bin/ directory before, you 
may have to add it to your $PATH to use it. 

In any event, on a linux-based systen you will ultimately have to choose one of these options: 

1. Add the validate-[version]/bin directory to your $PATH, which requires editing your shell 
resource file; or 

2. Create a link to validate-[version]/bin/validate (i.e., to the script rather than just the directory) 
in a directory already in your $PATH, which requires an additional edit to the validate wrapper 
script; or 

3. Type the full path to the validate script every time you want to run it. 

On Windows systems, you can install the Validate directory tree into the "Program Files\" directory 
for general use (this typically requires admin privileges), or in your own directory space for personal 
use. In either case you will have to modify the %PATH% environment variable setting information to 
make the validate.bat executable visible to all users or to yourself, respectively. Or you can run the 
batch file by typing the full path reference each time. 

What to Copy/Move 
Create a directory in your chosen installation location to hold the Validate Tool tree. You can name 
this validate, or include a version number, or rename it anything convenient. The name of the 
directory itself is not significant to the code. 

Under this directory, copy over the entire contents of the lib/ directory, and either copy or create 
a bin/ directory to contain the edited wrapper script - validate for linux-based systems, 
or validate.bat for Windows systems. For linux systems, you should also make sure 
the validate script is executable. 

At this point you may also want to copy over the contents of the doc/ directory, for easy reference; it 
is not needed to run the code. I also copy the README and LICENSE files from the root of the 
install package, just in case I want to find them again later. 

Edit the Wrapper Script/Batch File 
The validate script (linux) or validate.bat file (Windows) is used to run the tool. This file will need to 
be edited to conform to the installation environment. Any simple text editor (as described above) can 
do the job. 

Windows Batch File validate.bat 
You'll likely want or need to make a couple changes to this file. Lines beginning with "::" are 
comments - feel free to add more. 

The first executable line in the file is: 
@echo off 



which stops the shell from printing every executable line to your command window when you run the 
batch file. Comment this line out if you are trying to trouble-shoot the batch file. 

Immediately after this @echo off line, you should probably add this line: 
SETLOCAL 

This makes sure that any variables that are set by this batch file do not permanently overwrite any 
environment variables with the same name that might have already existed for other reasons. 

Following the next set of comments you will see the (uncommented) lines that check whether 
the %JAVA_HOME% environment variable is already set, and kill the batch file if it isn't. See the 
Finding and Setting JAVA_HOME page for detailed steps to check the variable, and to find the right 
value to use if it isn't set. 

If %JAVA_HOME% is not currently set, you have two options: 

1. Permanently add the definition to your environment variables. (See, for example, How to set 
the path and environment variables in Windows, by ComputerHope.com). In this case you 
don't need to make any changes to the %JAVA_HOME% test in the batch file. 

2. Replace these lines in the batch file: 
    if not defined JAVA_HOME ( 
    echo The JAVA_HOME environment variable is not set. 
    goto END 
    ) 

with something like this line: 
    set JAVA_HOME="C:\Program Files\Java" 

where you replace C:\Program Files\Java with the actual location of your Java home 
directory. Note that there should be no spaces around the "="; and the double quotes are not 
necessary in the set JAVA_HOME line if your path does not contain embedded blanks. 

Finally, the last executable line in the batch file before the :END statement looks like this: 
"%JAVA_HOME%"\bin\java -Xms256m -Xmx1024m -jar "%VALIDATE_JAR%" %* 

Remove the quotes from around %JAVA_HOME%. If the quotes were needed to set the value, then 
they are already part of the string and the additional quotes will cause a syntax error. 

N.B.: Paths with embedded blanks that are missing quotes, and extra sets of quotes, can both 
cause failures, frequently with messages about unexpected information or invalid paths. If you 
see that sort of message when you test the batch file, comment out the @echo off line so you 
can see exactly where the script is failing, and you may have to add or remove quotes on that 
line or an earlier line to adjust for the actual paths in your environment. 

Linux validate script 
If your $JAVA_HOME environment variable is not already set, the script will exit without 
invoking Validate. See the Finding and Setting JAVA_HOME page for gory details on determining the 
right value to set and how to set it in your environment. Note that the validate script is written to be 
run in the Bourne shell, so use Bourne shell syntax to set $JAVA_HOME in the script regardless of 
what your login shell is. So if you prefer to set %JAVA_HOME in the script, replace these lines: 

    if [ -z "${JAVA_HOME}" ]; then 
        echo "The JAVA_HOME environment variable is not set." 1>&2 
        exit 1 
    fi 

https://pds.nasa.gov/datastandards/training/documents/Finding%20and%20Setting%20JAVA%20HOME.pdf
http://www.computerhope.com/issues/ch000549.htm
http://www.computerhope.com/issues/ch000549.htm
https://pds.nasa.gov/datastandards/training/documents/Finding%20and%20Setting%20JAVA%20HOME.pdf


with something like this line: 

    JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.131-2.b11.el7_3.x86_64/jre 

where /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.131-2.b11.el7_3.x86_64/jre should be replaced with your 
actual Java home directory. Alternately, if you have a handy little java_home script installed 
(see Finding and Setting JAVA_HOME), this will also work: 

    JAVA_HOME=`java_home` 

If you are planning to link the validate script into a bin/ directory (as opposed to adding a new 
element to your $PATH to access this one executable), you'll need to edit a couple more lines in 
the validate wrapper script. The script crawls the local directory tree to find related lib/ directory using 
system functions, but that doesn't quite work of the script was invoked via a link. So in this case, 
replace these lines: 

    SCRIPT_DIR=`dirname $0` 
    PARENT_DIR=`cd ${SCRIPT_DIR}/.. && pwd` 

with something like these lines: 

    PARENT_DIR=/usr/share/pds4tools/validate/validate-1.11.0 
    SCRIPT_DIR=${PARENT_DIR}/bin 

where you should replace /usr/share/pds4tools/validate/validate-1.11.0 with the absolute path to your 
installed validate tree (the directory containing the bin/ and lib/ subdirectories). Also note the inverted 
order of the definitions. 

Finally, make sure the validate script is executable. 

Testing 
To make sure the batch file or script can properly invoke the tool, you can run it from its bin/ directory 
home. At the command prompt, go to the directory holding the validate script or batch file, and do: 
validate --version 

The response should something look like this: 

Validate Tool 
Version 1.11.0 
Release Date: 2017-04-03 11:57:19 
Core Schema: PDS4_PDS_1800.xsd 
Core Schematron: PDS4_PDS_1800.sch 

Copyright 2010-2017, by the California Institute of Technology. 
ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. 
Any commercial use must be negotiated with the Office of Technology Transfer 
at the California Institute of Technology. 

This software is subject to U. S. export control laws and regulations 
(22 C.F.R. 120-130 and 15 C.F.R. 730-774). To the extent that the software 
is subject to U.S. export control laws and regulations, the recipient has 

https://pds.nasa.gov/datastandards/training/documents/Finding%20and%20Setting%20JAVA%20HOME.pdf


the responsibility to obtain export licenses or other export authority as 
may be required before exporting such information to foreign countries or 
providing access to foreign nationals. 

Once you have had some experience with running validate and have developed preferences for 
options or schema file references, you may want to further modify the script or batch file to 
customize tool behavior accordingly. 

Install the Wrapper Script/Batch File 
Assuming, of course, that you don't want to do all your validation work in 
the validate tool bin/ directory, the last step is making sure you can invoke validate from wherever 
you will be working. For Windows users this will almost certainly mean adding a new directory to 
you %PATH% environment variable. Linux users can do likewise in their $PATH environment 
variable, but also have the option of adding a link to the validate script in a directory already in the 
command path. 

You can, of course, execute the script/batch file by using its full (absolute or relative) path on the 
command line. For ease of use, although, most people prefer to have their executables accessible 
through their command path. 

Setting Windows %PATH% 
If you only want to add the validate.bat location to your path temporarily, say for testing, you can 
enter something like this at the command prompt: 

   C:>set PATH=%PATH%;"C:\Program Files\validate-1.11.0\bin" 

where C:\Program Files\validate-1.11.0\bin should be replaced whatever the full path is to 
the bin/ directory containing the validate.bat file. This appends the path you provide to the current 
value of the %PATH% environment variable. The double quotes are required if the path you are 
adding contains embedded blanks. 

If you'd like to add the Validate Tool path to your default %PATH% once and for all, you can follow 
the instructions on this page for your particular flavor of Windows: 

• How to set the path and environment variables in Windows, by ComputerHope.com. 

Setting Linux-based $PATH 
The method used for adding a directory to your current $PATH varies based on the shell you use. 
The Bourne shell requires an assignment followed by an export command to make the new path 
visible to programs you run ('%' is the command prompt in the following examples): 

    % PATH=$PATH:/usr/share/validate-1.11.0/bin 
    % export PATH 

or this shortcut should also work: 

    % export PATH=$PATH:/usr/share/validate-1.11.0/bin 

where /usr/share/validate-1.11.0/bin is replace with the full absolute path to the directory containing 
the actual validate script (not a link). 

For C-shell and related shells, use a setenv command: 

   % setenv PATH $PATH":/usr/share/validate-1.11.0/bin" 

http://www.computerhope.com/issues/ch000549.htm


or the set command: 

   % set PATH=($PATH /usr/share/validate-1.11.0/bin) 

For either type of shell, you can do this at the command line before beginning you work with validate, 
or you can add the lines to your shell resource file so it's already there every time you open a new 
shell window. 

If you don't know what any of that means, it is time to seek out your friendly, neighborhood Linux 
programmer and ask, or try Googling "Setting environment variables" for your particular operating 
system. 

Linux Alternative to Extending $PATH: Links 
As long as the validate script is physically located in the Validate Tool installation tree as described 
previously, you can create a link to the script from some more convenient place so that you don't 
have to modify your $PATH just to run validate. You will need to have write permission to some 
directory already in your path. You can do this in the bin/ directory in your own home directory, for 
example (assuming it is already in your path). 

To do this, simply create a link to the validate script from the directory already in you path. Say, for 
example, that the Validate Tool tree is in your home directory and is called "Validate_Tool", so 
running ls on it looks something like this: 

    % ls ~/Validate_Tool 
    bin   doc   lib   LICENSE.txt   README.txt 

Create a link to the ~/Validate_Tool/bin/validate script from your ~/bin/ directory thus: 

    % cd ~/bin 
    % ln ~/Validate_Tool/bin/validate 

And that's it. If you want to start using validate immediately in the same shell window, you will have 
to run source on your shell resource file (for C-shells that would be source ~/.cshrc, e.g.) to force the 
shell to re-read you $PATH contents. Apart from that rare circumstance, however, validate should be 
in your path every time you start a new shell from now on. 

A similar method can be employed by users with sufficient privileges to create a link in an existing 
shared group or system bin/ directory for general use. 

Mac Users Note 

Mac users should be aware of a minor but possibly annoying detail when defining links. The Mac 
flavor of Linux, while allowing mixed-case file names, does not consider case significant when 
comparing file names. So if, for example, you decided to install the Validate Tool into ~/bin/Validate, 
and then tried to create a link called "validate" to ~/bin/Validate/bin/validate" in the same directory, 
you'd get an error message telling you a file by that name already exists. 

To get around this you can, of course, move the Validate Tool tree to a different directory; or you can 
give the link a different name using the second (optional) argument to the ln command, e.g.: 

    % ln ~/bin/Validate_Tool/bin/validate pdsval 

Now, to invoke the validate script you would use the pdsval link name: 

    % validate --version 



Test the Installation 
Once you think you've got the Validate executables tucked into their homes, you should test the 
installation and configuration. 

Aliveness Test 
To test whether you can successfully invoke the Java executable, try getting the help listing. This 
command: 
validate -h 

Should produce something like this: 

usage: validate <target> <options> Description

-B,--base-path <path>                Specify a path for the tool to use in order to 
properly resolve relative file references found in 
a checksum manifest file

-C,--catalog <catalog files>         Specify catalog files to use during validation.

-c,--config <file>                   Specify a configuration file to set the tool 
behavior.

-e,--regexp <patterns>               Specify file patterns to look for when validating a 
directory. Each pattern should be surrounded by 
quotes. Default is to look for files ending with a 
'.xml' or '.XML' file extension.

-f,--force                           Force the tool to perform validation against the 
schema and schematron specified in a given 
label.  

-h,--help                            Display usage.

-i,--integrity-check                 Perform referential integrity checking on the 
given target directory or directories. 

-L,--local                           Validate files only in the target                                       
directory rather than recursively traversing down 
the subdirectories.

-M,--checksum-manifest <file>        Specify a checksum manifest file to                                       
perform checksum validation against the targets 
being validated.

-m,--model-version <version>         Specify a model version to use during 
validation. The default is to use the latest model.



Alternately, you can view the version information for the executable: 
validate --version 

(--version can be abbreviated as -V, but note the capital. There is also a lower-case -v verbosity 
option.) This will produce a listing something like this: 

Validate Tool 
Version 1.11.0 
Release Date: 2017-04-03 11:57:19 
Core Schema: PDS4_PDS_1800.xsd 
Core Schematron: PDS4_PDS_1800.sch 

Copyright 2010-2017, by the California Institute of Technology. 
ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. 
Any commercial use must be negotiated with the Office of Technology Transfer 
at the California Institute of Technology. 

This software is subject to U. S. export control laws and regulations 
(22 C.F.R. 120-130 and 15 C.F.R. 730-774). To the extent that the software 
is subject to U.S. export control laws and regulations, the recipient has 
the responsibility to obtain export licenses or other export authority as 
may be required before exporting such information to foreign countries or 

-r,--report-file <file name>         Specify the report file name. Default is standard 
out.

-S,--schematron <schematron files>   Specify schematron files.

-s,--report-style <full|json|xml>    Specify the level of detail for the                                      
reporting. Valid values are 'full' for a full view, 
'json' for a json view, and 'xml' for an XML view. 
Default is to see a full report if this flag is not 
specified.

-t,--target <files,dirs>             Explicitly specify the targets (files, directories) to 
validate. Targets can be specified implicitly as 
well. (example: validate product.xml)

-v,--verbose <1|2|3>                 Specify the severity level and above to include 
in the human-readable report: (1=Info, 
2=Warning, 3=Error). Default is Warning and 
above.

-V,--version                         Display application version.

-x,--schema <schema files>           Specify schema files.



providing access to foreign nationals. 

Anything else indicates a configuration error of some sort. Re-check your paths and script/batch file 
editing and try again. If you can't resolve the problem yourself, contact your local PDS consultant for 
additional assistance. Please provide the failing file(s) and as much detail as possible.


	Validate Tool Functions
	Goal
	Part List
	General Procedure
	Procedure
	Unpack the Validate Tool Package
	Executables
	Documentation
	Peanuts

	Install the Executable and Support Directories
	Choosing an Installation Location
	What to Copy/Move

	Edit the Wrapper Script/Batch File
	Windows Batch File validate.bat
	Linux validate script
	Testing

	Install the Wrapper Script/Batch File
	Setting Windows %PATH%
	Setting Linux-based $PATH
	Linux Alternative to Extending $PATH: Links
	Mac Users Note

	Test the Installation
	Aliveness Test



