
Is my data file PDS4-compliant?
PDS4 data structures are severely limited, and how they may be applied to data is also part of PDS4
compliance. PDS4 data structures are designed for long-term archive stability and to support
interdisciplinary use. Specifically, for archival science data the primary data structures are tables and
arrays of 2-4 dimensions. These simple structures not only ensure long-term stability in the archive,
but they are also relatively hard to mis-read, reducing the amount of end-user error resulting from
misunderstood record formats. The use of these simple, standardized formats also supports inter-
disciplinary use of the data, as it tends to severely limit dependence on specific software packages
for working with PDS4 data.

Choosing Data Structures
You should choose PDS4 data structures that match the logical view of your data, as broken down
into a series of tables and arrays. For example, a simple image is archived as a 2D array
object, not as a table of vectors. Similarly, if you have a series of 2D arrays containing ancillary data
for an image - like quality flags, dark current, bad pixel maps, and such - each of those 2D arrays
must be archived as a separate data structure, not as pseudo-bands in an image cube.

File Structure
Multiple data objects may be stored in a single data file, and frequently are. All PDS4 data structures
stored in a file must be distinct from each other and contiguous in themselves. So you may not, for
example, interleave records of a table with scan lines of an image - you must separate the table out
into one contiguous block of bytes and the image into another. The table and image may, of course,
be stored sequentially in the same data file once separated into distinct data objects.

Non-PDS Data Formats
Sometimes it happens that data formatted to some other sort of standard (a processing standard or
a transport standard) may, coincidentally, already exist in a file as a series of separate arrays and
tables that are consistent with the logical view of the data, and thus meet the PDS4 data structure
requirements. In these cases, the PDS4 label may be written to describe the data as it exists in the
original file. The PDS4 Header object may be used to indicate a header block formatted according to
another standard that is also included in the file (a VICAR or FITS header, for example). But even
when the data structure in the file is PDS4-compliant, the PDS4 label must contain all the
information needed for a user to read and interpret the data. The Header object is merely a way of
accounting for non-PDS4-compliant bytes; end users must be able to ignore it without consequence.

Note: Even though some files formatted to other data standards may be PDS4 compliant,
there is no guarantee that any other file written in that standard will be. There is no other data
format standard known as of this writing that is guaranteed to produce a PDS4-compliant data
file in all cases. Every science product archived with the PDS must be in a PDS4-compliant
format. It is the data preparer's responsibility to ensure PDS4 compliance for all products
submitted for archiving.

FITS Format
FITS is a transport format common in small bodies data. Many FITS files contain data structures that
are PDS4-compliant, though some data preparers use the format in non-standard ways or pack
multiple, logically distinct arrays into a single multi-dimensional IMAGE in a way that is not PDS4-
compliant.

How do I translate FITS Header values into PDS label
values?
FITS is a transport format originally designed for moving observational data between different
computer architectures. Many FITS files are, structurally at least, compliant with PDS4 data structure
requirements, but care must be taken to ensure that the FITS structures are not being abused, or
that logically distinct data objects are not being packed into a single data structure, which would
negate PDS4 compliance.

Follow the guidelines below for filling in the PDS4 attribute values for compliant FITS files.

FITS Data Structures
Many FITS files are also PDS4-compliant, but no FITS structure is guaranteed to be PDS4-
compliant. Following are the issues to be aware of for the potentially PDS4-compliant FITS files.

BINTABLE
FITS BINTABLE extension data is structurally compliant with PDS4 binary table requirements. It is
possible to abuse this format by using the binary table record options in FITS to include a multi-
dimensional array in the table record. If this is done to accommodate, for example, a vector field or a
small matrix of values, then this can be considered PDS4-compliant and labelled
using Group_Field_Binary structures in the PDS4 label for the vector and array data. If this is being
used to attach header values to an observational data array, however, it violates the physical vs.
logical relationship required for PDS4 science data. Such data would generally need to be
reformatted.

IMAGE
The IMAGE extension, as well as the primary data segment, contains an N-dimensional array. Any
array with less than two, or more than four dimensions is suspect.

Degenerate 1D arrays have sometimes been used rather than BINTABLE extensions to avoid the
more detailed description requirements. Often this can be addressed simply by using the appropriate
binary table description in the PDS4 label without reformatting the data itself (the appropriateness of
the FITS description is not of primary concern for PDS4 archiving, although the external peer
reviewers may insist that it be corrected or removed if they consider it misleading).

Higher-dimensional arrays have been used to contain inhomogeneous data in a single array - for
example, a 2D intensity image might be combined with a quality map, bad pixel map, and
temperature map - and labelled in the FITS file as a 3D image. This is not PDS4 compliant. Each
plane with a different interpretation must be tagged as a separate data object in a PDS4 label (and
similarly for higher-dimensional cases). This may or may not require reformatting the data,
depending on how the inhomogeneous planes are stored.

Legitimate degenerate and higher-order arrays do sometimes occur. If you think you have such a
case in hand, contact your PDS node consultant for advice on how to proceed.

TABLE
The TABLE extension indicates a fixed-width ASCII table. Some FITS ASCII tables are PDS4-
compliant, but any candidate table should be examined carefully because the PDS4 constraints on
ASCII tables are a little more restrictive than the FITS constraints.

As in PDS4, only 7-bit ASCII characters are permitted in FITS TABLEs, and the only non-printable
characters permitted in either FITS or PDS4 character tables are the blank character and the

carriage-return and linefeed characters, which may only be used as record delimiters. FITS,
however, has no requirements on which line delimiters, if any, are used in the data. PDS4 requires
that all lines end with first a carriage-return and then a linefeed. If the FITS table does not have the
correct delimiters, it must be modified before it can be labelled as a PDS4 table.

Other FITS Structures
Note: Other FITS data structures, like random groups or ASCII tables without the PDS4-required line
delimiters, are not PDS4-compliant and must be converted to a compliant format before they may be
archived.

Special Note About Signed/Unsigned Integers
There seems to be an occasional misunderstanding about Table 19 in the FITS standard document
that affects both arrays and binary tables.

The only integer data types stored in a compliant FITS file are unsigned 8-bit bytes and signed 2, 4,
and 8-byte integers. Table 19 of the FITS standard does give the correct offset for converting each of
these types to their signed and unsigned counterparts, respectively, provided you have properly
converted the numbers from one hardware storage type to the other. It is not true that you can, for
example, just store unconverted unsigned 2-byte integers in your FITS file, add the offset from Table
19, and expect to get the correct (unsigned) value back from a compliant FITS reader.

The table in the FITS standard assumes that before your write your FITS file you properly convert
unsigned integers to signed integers by subtracting the offset value given and converting to a signed
hardware data type before you write your data into the FITS file. If you have not done this, then the
offset required to recover the original unsigned value is, in fact, twice the offset value shown in that
table if the value read in is negative, and zero if it is positive. (And conversely going from signed to
unsigned bytes.)

So, if you are migrating a PDS3-labeled FITS file and you see a DATA_TYPE keyword in the PDS3
label describing a one-byte field as an "MSB_INTEGER", or a multi-byte field as an
"MSB_UNSIGNED_INTEGER", you should be extremely skeptical about that data type description in
the PDS3 label, and possibly in the FITS header as well. Make sure that the offsets are consistent
with the values expected and found in the file, and report any discrepancies you discover.

In all cases the PDS4 <data_type> must be the data type used to read the values in the file,
and not the data type you might ultimately want to end up with. That conversion is a private matter
between the end user and his software.

Discipline Dictionaries
If your FITS files contain image or spectral data, you will need to provide additional information to
indicate the proper way to display them to correctly interpret things like axis labels and observation
geometry. Typically, any label for image data will include a <Display_Settings> class from
the Display discipline dictionary. See the Filling Out the Display Dictionary Class page for details. If
your file also contains spectral data, you should also check the Filling Out the Spectral Dictionary
Class page.

Depending on the data, there may be additional discipline dictionary classes required in your PDS4
label, as well as any mission dictionary classes that might be appropriate.

Headers
Use the PDS4 Header object to describe any type of FITS header.

https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20Display%20Dictionary%20Class.pdf
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20Spectral%20Dictionary%20Class.pdf
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20Spectral%20Dictionary%20Class.pdf

• The <object_length> must be the number of FITS blocks comprising the header * 2880 (the size
of a single FITS block).

• For <parsing_standard_id>, use "FITS 3.0".

Note that the FITS header is not considered an archival object by PDS4; the Header object merely
provides enough information for a program to skip over the header. Any critical information in the
FITS header must be translated into the PDS4 label.

Arrays
This category includes both the primary data array, following the first FITS header in the file, and the
data in any IMAGE extension. Use <Array_2D_Image> for any 2D data that can be reasonably
considered an image. For other data, use the most specific and relevant flavor of Array_* available.

Axis Ordering
FITS array data are stored such that the NAXIS1 subscript varies fastest, NAXIS2 next fastest, and
so on up to NAXISn. So, the storage order is first-index-fastest in FITS notation.

In PDS, arrays are stored so that axis 1 (the axis described by the <Axis_Array> that
has <sequence_number> of "1") varies least rapidly, axis 2 next least rapidly, and so on to axis n.

So, when labeling a FITS array as a PDS Array-type object, the highest-numbered NAXIS* becomes
axis 1 in the PDS array, the next-highest NAXIS* becomes axis 2, and so on.

Array Element Description
In the FITS primary data header or image extension header, the following reserved FITS keywords
also have direct PDS4 equivalents in the <Element_Array> class.

The BLANK keyword, when used according to the FITS standard, may only be used with integer
data, and may either be a blank (if BSCALE is 1 and BZERO is 0), otherwise it contains a flag value
indicating null data. If you need to specify a null value, add the <Special_Constants> class to
the Array class, and select the appropriate special constant for the case in hand. Note that
the BLANK value is the value read from the file - before any scale factor and offset are applied.

Scalar Data Types
In both the primary data array and IMAGE extensions, the data type is indicated by the value of
the BITPIX keyword.

FITS PDS4 Array

BSCALE <Element_Array>/<scaling_factor>

BZERO <Element_Array>/<value_offset>

BUNIT <Element_Array>/<unit>

BLANK
integer data only see below

DATAMAX <Object_Statistics>/<maximum_scaled_value>

DATAMIN <Object_Statistics>/<minimum_scaled_value>

BITPIX Value PDS Data Type(s)

2D Images
In addition to the above correspondences, the PDS4 Array_2D_Image class has the following
additional correspondences.
• NAXIS1 corresponds to axis 2, and axis 2 must have an <axis_name> of "Sample".
• NAXIS2 corresponds to axis 1, and axis 1 must have an <axis_name> of "Line".

Also note that the FITS standard says nothing about display direction. It seems to be universally true
that samples (NAXIS1) are always drawn left-to-right; but lines are drawn either top-to-bottom or
bottom-to-top with roughly equal frequency. You will have to look at your FITS images and determine
the correct order of display. You must indicate this order in your label via the Display Discipline
Dictionary classes.

Binary Tables
Use a <Table_Binary> class for FITS BINTAB tables.

Note that the FITS standard requires that the BINTAB data be padded with null ("\0") from the end of
the last record to the end of the containing 2880-byte FITS block. There is no requirement to
document these padding bytes in the PDS4 label, and they are generally ignored.

Field Descriptions
In the FITS BINTAB extension, the field description keywords, for the most part, translate directly to
PDS4 Field_Binary class attributes. Note that the only required keyword for each field is TFORM:

8 UnsignedByte -or- 7-bit ASCII character

16 SignedMSB2 (integer)

32 SignedMSB4 (integer)

-32 IEEE754MSBSingle (float)

64 SignedMSB8 (integer)

-64 IEEE754MSBDouble (float)

FITS PDS4 Field_Binary

TTYPE <name>

TUNIT <unit>

TSCAL <scaling_factor>

TZERO <value_offset>

TNULL
integer data only see below

TDISP see below

TFORM
<data_type>
see below

TNULL is only properly used for integer data. It indicates a null data flag, and corresponds to the
value found in the file - before scaling or offset are applied. It can be translated into one of the
specific flags in the <Special_Constants> class, depending on the circumstances of the data.

TDISP provides a recommended print format for the binary data, using a limited set of FORTRAN-
like specifiers. In PDS4 the specifiers follow the POSIX standard and are described on the PDS4
Field Format Conventions page.

Note: The TDISP value may include a repetition specifier (as the first number in the string). If this
number is zero, the field is non-existent in the FITS file and should NOT have a
corresponding Field_Binary in the PDS label. If this number is greater than one, then the field is
either a vector or a multi-dimensional array. See the sections below on “Vector Fields” and “Array
Fields” for more information.

TFORM is used in a BINTAB table to define the storage data type of the associated field. These and
their PDS4 equivalents are enumerated below.

Note: In the BINTAB extension, there is no way to specify the location of a particular field as an
offset from the beginning of the record, as the <field_location> attribute does for PDS4 files. This
means two things:

1. Every byte in the BINTAB record must be included in one of the defined fields - there is no
undeclared gutter space, spare bytes, or record delimiters in FITS BINTAB data. On top of
that, the fields must be defined in the order in which they appear in the file.

2. You will have to calculate the <field_location> for each field in the record by adding up the
total sizes of all preceeding fields. Don't forget the repetition counts in your TFORM fields in
your location math!

Scalar Data Types
TFORM will have to be translated to the PDS4 equivalent. The FITS BINTAB scalar types that are
directly supported by PDS4 binary tables are:

"Other appropriate ASCII_* types" include things like ASCII_Date_Time for strings representing
times in the standard format, for example.

In addition to the scalar types, the FITS standard allows a field to contain a repeating value
(basically, a vector), fixed-sized array, or a variable-sized array descriptor.

FITS Type Letter PDS4 <data_type>

B UnsignedByte

I SignedMSB2

J SignedMSB4

K SignedMSB8

A
ASCII_String
(or any other appropriate ASCII_* type)

E IEEE754MSBSingle

D IEEE754MSBDouble

C ComplexMSB8

M ComplexMSB16

https://pds.nasa.gov/datastandards/training/documents/PDS4%20Field%20Format%20Conventions.pdf
https://pds.nasa.gov/datastandards/training/documents/PDS4%20Field%20Format%20Conventions.pdf

Vector Fields
Vector fields can be identified in the FITS header by finding fields with a repetition count greater than
one in their TFORM values, but without an accompanying TDIM value for the field (or a TDIM that
has only one subscript).

Note: For ASCII types, and only ASCII types, a repeat count in the TFORM value should be treated
as the length of the string (i.e., the size of the field), and not as indicating an array of single-
character values. In the PDS4 label, use a Group_Field_Binary class to define FITS vector fields.
The Group_Field_Binary will contain have a <fields> value of 1 and <groups> of 0, with
a <repetitions> value equal to the repetition count from the TFORM value. Nested inside the group
will be a single <Field_Binary> definition to define the repeating element.

Array Fields
There are two possible array types in FITS binary tables: Fixed-size arrays, which are supported in
PDS4; and variable-size arrays, which are not PDS4-compliant.

Fixed-size arrays look like vector fields, in that they have TFORM values with a repetition count
greater than one. But they also have an associate TDIM keyword with a value that looks like a set of
array indices. For example, this set of keywords defines a 5x6 array of double-precision floating
point numbers as a single FITS binary table field:

 TTYPE01 = 'SIMPLE ARRAY'
 TFORM01 = '30D'
 TDIM01 = '(5,6)'

The repetition count in TFORM ("30", in this case) must be equal to the total number of elements in
the array.
N.B.: FITS stores all arrays, including binary table array fields, in first-index-fastest order. The PDS4
label must describe this array in a way that will ensure that it is read in that sequence. In order to do
this, you will need nested Group_Field_Binary classes, with a Field_Binary class at the bottom. So,
the basic structure for describing the field above would be:

 <Group_Field_Binary>
 <fields>0</fields>
 <groups>1</fields>
 <repetitions>6</repetitions>
 <group_location unit="byte">[whatever the start byte is for the whole group]</
group_location>
 <group_length unit="byte">240</group_length>

 <Group_Field_Binary>
 <fields>1</fields>
 <groups>0</groups>
 <repetitions>5</repetitions>
 <group_location unit="byte">1</group_location>
 <group_length unit="byte">40</group_length>

 <Field_Binary>

 ...the usual field definition...
 </Field_Binary>
 </Group_Field_Binary>
 </Group_Field_Binary>

You should also add specific comments (in the <description> of the Field_Binary) to advise end-
users on what each of the dimensions represented by the Group_Field_Binary classes represents,
sufficient for a programmer to be able to decide the correct subscript order to use in mapping values
from the data file into program memory.

ASCII Tables
FITS character tables will always appear as TABLE extensions. Only 7-bit ASCII characters are
permitted in TABLEs, and the only non-printable character permitted in FITS or PDS4 character
tables are the blank character and the carriage-return and linefeed characters, which may only be
used as record delimiters.

Note that the FITS standard requires that the TABLE data be padded with blanks to an even number
of FITS 2880-byte blocks following the last record in the table. There is no requirement that these
padding characters be included in the PDS4 label, and they're generally ignored.

A Note About Line Delimiters
The FITS 3.0 standard allows non-printing control characters to appear at the end (after the last
field) of each table record. Most commonly, any control characters found here will be some form of
line delimiter. So, in FITS TABLE data:

• Record delimiters are not required at all.
• Neither does the FITS standard require that all line delimiters, if they are present, be the

same.
• If a delimiter is present, you have no standard way of determining what it is without actually

reading a record and checking the bytes.

PDS, on the other hand, requires that every line of Table_Character data end with a "carriage-return/
linefeed" sequence. The upshot of all this is that you cannot assume that any FITS TABLE extension
can automatically be labelled as a PDS4 Table_Character. You must ensure that carriage-return/
linefeed line delimiters exist on every record before the data can be archived.

TABLE Header Keywords
In the TABLE extension header:

• NAXIS1 corresponds to the <record_length> attribute in the <Record_Character> class.
• NAXIS2 corresponds to the <records> attribute in the <Table_Character> class.
• TFIELDS corresponds to the <fields> attribute in the <Record_Character> class. (Unlike

in BINTAB tables, ASCII tables may not have fields that are arrays, vectors, or complex
numbers.)

The required <groups> attribute will always have a value of zero (fields in FITS TABLEs are not
allowed to have repetition counters).

Field Descriptions
Each field must have a corresponding TBCOL and TFORM keyword in the FITS TABLE header, but
all other keywords are optional. The reserved keywords used to define the fields have close analogs
in the PDS4 <Field_Character> class:

TNULL is a string used as a null data flag for the field and corresponds to the value found in the file -
before scaling or offset are applied. It can be translated into one of the specific flags in
the <Special_Constants> class, depending on the circumstances of the data.

TDISP is an optional keyword that can be used to contain a more specific display format than that
implied by the TFORM keyword.

Scalar Data Types
TFORM is required for every field to indicate data type. It has a syntax similar to a FORTRAN format
specifier, with a type specifier followed by a total field width ('w') and, for real values, a precision ('d').
Unlike the keyword of a similar name in BINTAB extensions, TFORM values in TABLE
extensions may not contain repetition counts in a compliant FITS file. [Note: Non-compliant FITS
files have been known...]

The correspondence to PDS4 <data_type> is straightforward for numeric types:

"More specific ASCII_* string types" include, for example, ASCII_Date_Time for date/time fields
conforming to the standard ISO 8601 format.

FITS PDS4 Field_Character

TBCOL <field_location>

TFORM
<data_type>
see following

TTYPE <name>

TUNIT <unit>

TSCAL <scaling_factor>

TZERO <value_offset>

TNULL see below

TDISP see below

TFORM PDS4 <data_type>

Aw
ASCII_String
(or more specific ASCII_* string type)

Iw ASCII_Integer

Fw.d ASCII_Real

Ew.d ASCII_Real

Dw.d ASCII_Real

