
Understanding XML Catalog Files
XML catalog files use some terminology that can be fairly opaque to those new to XML. Following is
an explanation of the key terms used in the XML Catalog standard and their relevance to the PDS4
context.

Identifiers: Public vs. System
The concepts of public identifier and system identifier predate XML. Both concepts were key in the
pre-OASIS world of SGML (the ancestor of XML). These identifiers allowed a document author to
reference a file external to his own document. Typically, this would be a Document Type Definition
(DTD). DTDs predate schemas, but do the same sort of job - defining the valid content of an SGML
file. Standard DTDs were developed to provide interoperability between systems. Perhaps the most
widely-known DTD is the DTD that defines the DocBook documentation system.

At this stage of the game, the distinction between public and system identifiers was clear and simple:
The public identifier was a globally unique, permanent and invariant identifier assigned to a
resource, like the DocBook DTD. The format of the public identifier was defined as part of the ISO
8879 (SGML) standard as the Formal Public Identifiers (FPIs) format, and there was (presumably
still is) at least one registration authority to assign namespaces to insure that unique FPIs can be
formulated by diverse organizations. The public identifier was clearly a logical identification of a
resource.

In this regime, the system identifier was always a physical location - a reference to a file on disk, for
example. The SGML standard required that at least one of the two identifiers was present, but did
not require both.

Enter Catalog Files
At this point, the public identifier was a logical reference that could not easily be resolved, but at
least it was transportable, unlike the system identifier. To address this problem, the SGML Open
project, which eventually became OASIS, developed the first catalog-type standard (OASIS
Technical Resolution 9401:1997) to map public identifiers to system identifiers in an external
("catalog") file, which could be referenced by applications.

Now, in this pre-XML world, this was a pretty straightforward task. The public identifier was always a
logical reference, and the system identifier was always a physical reference to a locally accessible
file. So a DocBook author, for example, could include both types of identifier in his source files as he
was preparing them, and when he sent them out into the world the receivers could set their
applications to ignore the system identifiers in the document and instead translate the public
identifiers using their own catalog files. In other words, the application could choose whether
the public or system identifiers should be "preferred" - a term that will come back later with much
reduced significance for XML.

Time Passes...
SGML begat XML, the SGML Open group became OASIS Open, and URIs have largely supplanted
FPIs. In XML documents, the public identifier is optional, while the system identifier is usually
required (to identify things like name spaces and import files). But in XML, these references are also
required to be URIs, which are themselves logical pointers. In the XML regime, the system
identifier does not point to a physical location.

http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/specs/a401.htm

OK, it might point to a physical location - some URIs do. But in general URIs are not required to be
resolvable in themselves, so you can't count on someone else's URI being directly resolvable to a
physical file. Which is why XML documents may include schemaLocation attributes - to indicate the
physical location of the files needed to define name spaces or to be imported into the current
document.

XML Catalog Standard
So OASIS rolled up its sleeves and beefed up the early mapping standard to become the XML
Catalog 1.0 standard, to address both SGML and XML mapping needs. The catalog file maps the
values of public identifiers, system identifiers and URIs generally to (other) URIs that actually do
resolve to a physical file. It will do this for anything your application considers to be an external id
(either a public identifier or a system identifier), as well as for any other URIs it encounters. A few
things to keep in mind when reading/writing catalog entries:
• The XML Catalog standard explicitly states that the first matching line is the one applied -

anything else will be ignored. When you are writing your translation elements, put the most
specific matches first, and the more general matches later. For example, if you are trying to
match a URI that ends in a file name, put that element before any element that matches just the
path.

• Applications can choose to be picky about URI formatting in your catalog files. According to the
XML Catalog standard, catalog processors must normalize URIs before running a comparison,
but some processors may be more liberal in what they'll recognize and translate for you than
others if, for example, you use local OS path syntax rather than the Unix-like syntax technically
required by the "file:" protocol. The oXygen editor, for example, is fairly lenient about URI
formatting in the catalog file. Other applications may not be so forgiving.

• One of the consequences of the evolution from DTD and external (public/system) identifiers to
XML and URIs is that the distinction between public and system identifiers is largely moot. The
external identifiers in our PDS XML documents - the references to the XML Schema and XML
Schema-Instance name spaces, for example - are not required to have system identifiers (the
definitions are "built-in", as it were). Since everything else falls under the "URI" rubric, our XML
Catalog files tend to contain only URI-type mappings.

• As a result, applications may be lenient about discriminating between public/system identifiers
and general URIs when matching strings and applying mappings. For some applications, using
a system identifier mapping rather than a URI mapping will still translate all occurrences of the
matching URI, even if it technically isn't being used as a system identifier.

• It is possible to write complex catalog files, with elements for including additional files or
branching from one catalog file to another. Most PDS data preparers and users don't need any of
those complications. The standard set-up and a few simple URI mapping parameters will do the
job for most of us.

• Catalog files are not transportable. They are the epitome of environment-specific configuration.
So when following someone else's example, be particularly careful about the file specification
URIs you will be translating to - they will depend critically on your local file system.

XML Catalog File Elements
Here is what you need to know to write or edit an XML Catalog file.

Every catalog file will begin with the usual <?xml> tag and possibly a <!DOCTYPE> declaration
(some applications require it, some forbid it), followed by the <catalog> tag which begins the catalog
information proper and identifies the namespace associated with the XML Catalog standard. These
can be copied verbatim from any valid catalog file; if you use an XML Catalog generation tool, these

will be provided for you. The <catalog> tag may have a prefer attribute with a value of
either "public" or "system". As explained above, for PDS purposes this preference setting is
meaningless – we will only be mapping URIs, not external identifiers.

Between the <catalog> and </catalog> tags, these are the tags that will likely be most useful and
most common in catalog files supporting PDS labels:
<uri name="name_string" uri="physical_reference"/>
The <uri> element does a straight one-to-one mapping from the URI given as the value of "name" to
the URI given as the value of "uri". So name_string is what appears in the XML file,
and physical_reference is the actual location of the file that contains the answer (the namespace
definition, the XML fragment to be included, etc.). This must be resolvable. For most of our users
this will resolve to a file on the local file system, so it will begin with the string "file:///". It could also
resolve to a web location if that's the way you roll, in which case it will likely begin with something
like "http:" or "ftp:". The URIs should both be URI-encoded, for safety.
<rewriteURI uriStartString="old_prefix" rewritePrefix="new_prefix"/>
The <rewriteURI> element can be used to map many URIs at once, based on a common initial
substring in those URIs. For example, say you have reproduced the PDS schema directories in a
local repository. You could then map all your PDS namespace references at once by replacing the
"http://pds.nasa.gov/pds4" part of every namespace URI with a reference to the root directory of your
schema repository. As with the <uri> element, the URI created must be resolvable. Old_prefix is the
prefix as it appears in the XML file; new_prefix is the replacement that turns that string into a
resolvable reference.
<uriSuffix uriSuffix="uri_suffix" uri="physical_reference"/>
The <uriSuffix> element matches based on the end of the URI string - so if the URI in the XML
document ends in uri_suffix, then the entire URI is mapped to the physical_reference (which must, of
course, be resolvable). Note that this is not at all like <rewriteURI>, which effectively does a string
substitution on the URI from the XML document. <uriSuffix> matches based on the suffix only, but
then expects to map this to a complete, new URI. (One of the few differences between the XML
Catalog 1.0 and 1.1 standards is the addition of this element in the 1.1 standard.)
<delegateURI uriStartString="prefix_string" catalog="physical_reference"/>
The <delegateURI> element lets you hand off URI translation for a set of URIs to a different catalog
file. This can be useful if you are working in a fairly complex environment where some of your URI
translations are stable and some aren't (or some are in production mode and others in
development). This could also be used to set up a hierarchy of public and private XML catalogs.
When a URI in the XML document starts with the prefix_string, the URI will be immediately handed
off to the catalog file indicated by the physical_reference for processing. (Note, though, that the
catalog processing will stop at the first match encountered, so take care with where you locate your
delegate element.)

There are analogous elements to the above for mapping public identifiers and system identifiers, as
well as a <group> element for providing default preferences and base URIs for these elements, and
a <nextCatalog> element for explicitly passing control to another catalog file (rather than letting your
application work through a predefined list). In addition, all the elements listed above will take
an xml:base attribute to specify a base URI, so that relative URIs can be turned into absolute URIs.
For most PDS uses, where all required URIs are also required to be absolute and the public/system
preference is not applicable, these are not necessary. If you think you might need or want them, read
the standard carefully and have at it.

Some Simple Examples
Following are some simple XML Catalog files for a couple of common scenarios. Note that these all
contain both the DOCTYPE reference and the catalog namespace reference
("urn:oasis:names:tc:entity:xmlns:xml:catalog"). Some PDS4 tools may choke on
the DOCTYPE directive; it can be removed as long as the namespace reference remains in
the <catalog> statement.

rewriteURI
This catalog file uses a single rewriteURI statement to map all PDS4 namespace schema references
to a copy of the schema tree on a local (NFS-mounted) directory:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd">
 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <rewriteURI uriStartString="http://pds.nasa.gov/pds4"
 rewritePrefix="file:///n/sbnops/lcltools/schema"/>
 </catalog>

For example, a reference to the schema URI "httpd://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1301.xsd"
will be translated to the local file reference "/n/sbnops/lcltools/schema/pds/v1/PDS4_PDS_1301.xsd".

uri
This catalog file adds uri statements before the rewriteURI statement to catch references to mission
(EPOXI) schema files still in local development. The uri statements have to come first because the
catalog processor will stop with the first statement that matches - so in this case if
the rewriteURI statement came first, the processor would never make it past there.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd">
 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <uri name="http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.xsd"
 uri="file:///home/raugh/Oxygen/epoxiDD/epoxi_draft.xsd"/>
 <uri name="http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.sch"
 uri="file:///home/raugh/Oxygen/epoxiDD/epoxi_draft.sch"/>
 <rewriteURI uriStartString="http://pds.nasa.gov/pds4"
 rewritePrefix="file:///n/sbnops/lcltools/schema"/>
 </catalog>

The uri statement replaces the entire matched name with the associated URI value, so the string
"http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.sch", for example, will be replaced by the
reference to the local file "/home/raugh/Oxygen/epoxiDD/epoxi_draft.sch".

delegateURI
Alternately, if you are working with several mission dictionaries in active development scattered
across your disc space or network, you might want to use a catalog file specifically to handle the

urn:oasis:names:tc:entity:xmlns:xml:catalog

mission dictionaries and use your local schema tree for the rest. In that case, you would use
a delegateURI statement to trap references to all mission namespaces and pass them off to a
different catalog file, while the rest fall through to be handled by the rewriteURI:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd">
 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <delegateURI uriStartString="http://pds.nasa.gov/pds4/mission"
 catalog="file:///home/raugh/Oxygen/XMLCatalogs/mission_schemas.xml"/>
 <rewriteURI uriStartString="http://pds.nasa.gov/pds4"
 rewritePrefix="file:///n/sbnops/lcltools/schema"/>
 </catalog>

In this case, all references beginning with "http://pds.nasa.gov/pds4/mission" will be passed to the
"mission_schemas.xml" catalog file for resolution. Say that catalog file looks like this:

Contents of mission_schemas.xml:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd">
 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <rewriteURI uriStartString="http://pds.nasa.gov/pds4/mission/epoxi/v1"
 rewritePrefix="file:///home/raugh/Oxygen/epoxiDD"/>
 <rewriteURI uriStartString="http://pds.nasa.gov/pds4"
 rewritePrefix="file:///n/sbnops/lcltools/schema"/>
 </catalog>

Given these two catalog files (in their proper places, of course):

• a reference to "http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.xsd" will be passed
to mission_schemas.xml, which will return a new value of "file:///home/raugh/Oxygen/epoxiDD/
EXPOXI_1-0.xsd";

• a reference to "http://pds.nasa.gov/pds4/mission/di/v1/DEEP_IMPACT_1-1.xsd" will also be
passed to mission_schemas.xml, but will return a new value of "file:///n/sbnops/lcltools/
schema/mission/di/v1/DEEP_IMPACT_1-1.xsd"; and

• a reference to "http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1300.xsd" will be handled by the
first catalog file, and will return a value of "file:///n/sbnops/lcltools/schema/pds/v1/
PDS4_PDS_1300.xsd".

References
Here are some links to the various standards mentioned above:

• XML Catalogs V1.0, October 2002

http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html

• XML Catalogs V1.1, October 2005
• OASIS Technical Resolution 9401:1997 (pre-XML catalogs)
• Extensible Markup Language (XML) 1.0 (Fifth Edition)
• XML Schema Definition Language (XSD) 1.1 Part 1: Structures

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/specs/a401.htm
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema11-1/

