
Using Validate Tool
The Validate tool is the canonical PDS4 validator for single labels, collections, and bundles. It
provides additional functionality beyond schematic development, and advanced features are still in
active development.

If you have not already installed and configured Validate, you will find instructions on the Installing
and Configuring Validate Tool page, as well as included in the download bundle.

The following information was updated for validate version 1.11.1.

Format
The general command format is:
% validate [files] [options]

"Files" can be a single label file name, a directory, or a comma-separated list of both. This list may
include absolute and relative paths, wild cards, and file globs. Alternately, the product labels to be
validated can be specified as arguments to the -t option.

Default Behavior
• If validate is given a directory as an argument it will attempt to validate all files ending in

either ".xml" or ".XML" with the selected options and will recurse down through all
subdirectories doing the same.

• For each label, validate will:
• Check conformance to the schema and Schematron files referenced or supplied;
• Confirm that all referenced data files exist (note that case in file names is significant)
• Calculates and compares data file MD5 checksums to values provided in the corresponding

label via the <md5_checksum> attribute; and
• If an MD5 checksum manifest file is provided (via the -M option), calculates MD5 checksums

for the label and data files and compares them to the values in the manifest file.
• For each directory, validate will run label validation on every file it finds that ends in ".xml" or

".XML", and recurse down through subdirectories doing the same.
• When the validate argument list contains both individual labels and directories, the default

label validation is applied to all labels, and the default directory validation is applied to all
directories.

Command Line Options
These options have been grouped by functional areas. All options have both a short and a long form.
One or two hyphens can be used for both short and long options interchangeably; long
options cannot be truncated. Most options require arguments, but even those that do not can not be
globbed. That is, specifying "-Vh" will display only version information, not help information.

Alternately, a configuration file can be used to give values for most of the following options. The
Validate Tool Configuration File page provides details.

Program Information
These options provide information about the program itself.

https://pds.nasa.gov/datastandards/training/documents/Installing%20and%20Configuring%20Validate%20Tool.pdf
https://pds.nasa.gov/datastandards/training/documents/Installing%20and%20Configuring%20Validate%20Tool.pdf
https://pds.nasa.gov/datastandards/training/documents/Validate%20Tool%20Configuration%20File.pdf

Selecting What to Validate
These options, along with any files and directories included in the argument list, select and refine the
file and directories validated. Whether included as arguments to validate or arguments to the -
t option (below), the Validate Tool documentation refers to these collectively as "targets".

Option Argument Notes

-V
--version --none--

This option displays the internal code version, the
release date, and the core schemas applied by default
by this version of validate, in addition to some licensing
boilerplate.

-h
--help --none--

This option displays a command and option summary.
It is about 50 lines long, so prepare to scroll.

Note: No merging or duplicate removal is done on the list of files and directories supplied. If
the list, when expanded, includes the same file or directory more than once, that element will
be validated in its entirety each time it is listed. This is a waste of time - potentially a significant
one for large file collections - so type carefully.

Also, be warned that the Validate Tool - Operation documentation included with the tool uses
the word "implicit" to mean "explicit", and consistently mis-uses both terms in an attempt to
distinguish between targets specified as command arguments and targets specified as option
arguments (i.e., arguments to command options, like -t). The examples in the document do
reflect actual program behavior.

Option Argument Notes

-t
--target file/directory list

Use this option as an alternate way to specify which
files and/or directories (i.e., "targets") to validate. In the
absence of the -t option, the comma-separated list of
targets must immediately follow the validate command.
By using the option, the target list can appear at any
point among the other options. The syntax and
globbing options are identical whether the -t switch is
used or not. It is possible to provide two target lists:
one with the -t option, and one without. In this case the
two lists are concatenated, and any options that modify
file selection apply to the merged list.

-L
--local --none--

Note the uppercase "L" in the short version of this
option. When present, this option
prevents validate from recursing down into
subdirectories of any directories included in the
argument list or -t target list.

Output Control
These options affect the format and destination of the output report. Three "INFO" messages
produced at the start of every validate run go to the standard error output, but everything else is
directed to standard output unless this option is present. You can also redirect the output to a file or
a process, if desired.

-e
--regexp pattern[, pattern]

This option appears to be misnamed. It does not
accept regular expressions in general, but rather allows
an addition option for file-globbing beyond what might
be in the argument or target list. It is applied only to the
file name, not the path, and behaves as if anchored to
the beginning and end of the file name. So -e
"*.XML" will select only files with the explicit uppercase
"XML" extension.

Beware of selecting files by name without extension.
The option -e "table*" will select all files beginning with
"table" regardless of file extension - most likely
producing a validation error when validate attempts to
validate data files as well as labels.

Option Argument Notes

-r
--report-file file name This option directs the output to the named file.

-v
--verbose 1 | 2 | 3

This option affects the "Validation Details" listing in the
report by changing the severity level of the messages
generated. A value of 1 causes INFO level and above
messages to be included in the details; a value
of 2 (the default) includes WARNING level and above;
a value of 3 includes only ERROR level messages.
Note that the PASS and FAIL messages are always
generated, irrespective of the verbosity setting.

-s
--report-style full | json | xml

The default report format, corresponding to
the full value, is human-readable. This option allows
you specify an alternate form for the output that is more
congenial to programmatic analysis. Two alternatives
are currently available: json, which produces JSON
output; and xml, which produces output with XML tags
(there is no schema published for these tags, but the
tag names are formulated from the titles present in the
default report format). Note that these values must be
in lowercase. Using "JSON" rather than "json", for
example, will not produce the expected error message
for an unrecognized value, but rather just the literal
word "null".

Specifying Schemas
The Validate Tool comes with the released schema and Schematron files for the core ("pds")
namespace built-in. By default, it will use the latest version of these for validation. If you are not sure
what that version is, use the -version option to check. Older releases of the core namespace can be
indicated via the -model-version option (below).

All other dictionary schema/Schematron files, including discipline dictionaries and any local
dictionaries you have created, must be read in by validate - so you will have to have access to the
relevant schema/Schematron files and will have to direct validate where to find them. A number of
options are provided for that.

Note: PDS4 dictionaries consist of two files: a schema (.xsd) file and a Schematron (.sch) file.
Both are needed to fully define any PDS4 namespace (core, discipline, or local). If you are
validating files that reference non-core namespaces and do not provide the schema file, you
will get an "ERROR" message in the "Validation Details" list containing a phrase like "The
matching wildcard is strict, but no declaration can be found for element...", followed by an
element from the missing namespace. If you omit the Schematron file, however, no notice of
any kind will be generated - validate cannot tell that a Schematron file is missing due to the
nature of Schematron validation (i.e., further constraints on top of the definitions contained in
the schema file).

Triple-check your Schematron file lists to avoid missing validation errors.

Option Argument Notes

-m
--model-version

(DEPRECATED)

version code

By default, validate will validate all labels against the
default version of the core namespace (listed in the -
version option output). You can change the core
namespace version used for validation to any
previously released version with this option. The
"version code" is the version ID with all the '.'
characters removed - so to validate all labels against
the 1.7.0.0 version of the core namespace, use "-m
1700".

Note: Use caution when combining this option with
the -x and -S options (see below). This option is
ignored without comment when the -f option is
present.

-f
--force

(DEPRECATED)
--none--

This option forces validate to validate each label
against the schema and Schematron files actually
referenced in the label (via, for
example, schemaLocation attributes). Those
references must be resolvable. So, for example, you
use a schemaLocation style that looks like a
URL, validate will attempt to connect to that URL to
download the file. If it can't, the program will issue a
"FATAL_ERROR" and move on to the next label.

Note: This option cannot be used in conjunction with
the -catalog option, so labels may contain only
absolute paths or URL references that can be resolved
through a network connection for this option to be
viable. Neither can this option be used with the -
schema and -schematron' options.

-C
--catalog XML catalog file

This option takes an XML catalog file as an option and
attempts to use it to resolve public and system ID
references for validation files. (See the Understanding
XML Catalog Files page for more information on
catalog files and their use.) In most respects, it fails.

There is an example of a catalog file that might work in
the Validate Tool Operations guide, but the same effect
can be achieved with less effort by using a
configuration file (see below) with the schema file lists.
In particular, this option fails to properly apply an XML
Catalog file that makes use of
the <rewriteURI> element. This, in conjunction with the
fact that it cannot be combined with the -force option,
where you would likely want to be able to locate
multiple different versions of various schema files,
makes the functional usefulness of this option
extremely limited.

https://pds.nasa.gov/datastandards/training/documents/Understanding%20XML%20Catalog%20Files.pdf

-x
—xsd XSD file list

Use this option to list the schema (i.e., the "*.xsd")
files, by location, to be used for validating labels.
Typically, this will be used to provide the XSD part of
discipline and local dictionary schemas, and must be
used in conjunction with the -schematron option. If
you are using an older version of Validate with a new
version of the core schema (a version later than the
default version built into the tool), you will also need to
supply that schema location via this option. The
"location" can be either a directory on your system, or
a URL (if you have a network connection and valid
URL).

Caveats:
• This option cannot be used in conjunction with

the -force option.
• If you are listing a core schema file, it must

come first.
• If you list more than one version of any single

dictionary XSD file, only the last one listed will be
applied.

• Using this option more than once is not an error.
The program behaves as if the various arguments
to the option were concatenated into a single,
comma-separated list in the order specified on the
command line.

• Using this option without the -schematron option
is not an error and doesn't generate a warning -
even though every PDS4 dictionary that has a
schema file also has a Schematron file that must
be used for validation as well.

• Listing an XSD file in this option does
not automatically include the corresponding
Schematron (.sch) file - you must include it
explicitly via the -schematron option.

• There is no attempt to match the XSD file list in
this option with any Schematron list that might or
might not be provided via the -schematron option.

• Attempting to use this option with the -model-
version option does not produce an error, but the -
model-version will override the core schema
version listed by this option (but see the similar
note for the -schematron option).

Additional Validation
These options direct the Validate Tool to perform validation steps beyond the schema validation.

-S
--schematron SCH file list

Use this option to list the Schematron (i.e., the ".sch")
files, by location, to be used for validating labels.
Typically, this option will be used to provide the
Schematron part of discipline and local dictionary
schemas, and must be used in conjunction with the -
schema option. If you are using an older version
of Validate with a new version of the core schema, you
will also need to supply that Schematron location via
this option. The "location" can be either a directory on
your system, or a URL (if you have a network
connection and valid URL).

Caveats:
• This option cannot be used in conjunction with

the -force option.
• If you list more than one version of any single

dictionary Schematron file, both will be applied to
all labels. This may result in either duplicate or
conflicting errors flagged by the Schematron files.

• Using this option more than once is not an error.
The program behaves as if the various arguments
to the options were concatenated into a single,
comma-separated list in the order specified on the
command line.

• Using this option without the -schema option is not
an error and doesn't generate a warning - even
though every PDS4 dictionary that has a
Schematron file also has a schema file that must
be used for validation.

• Listing a Schematron file in this option does
not automatically include the corresponding
schema file.

• There is no attempt to match the Schematron file
list in this option with any schema files listed via
the -schema option.

• Attempting to use this option with the -model-
version option does not produce an error, but -
 unlike the case with the -schema option - this
option will override the -model-
version Schematron.

Option Argument Notes

-R
--rule

pds4.label
pds4.folder

pds4.collection
pds4.bundle
pds3.volume

This option is the only way to get referential integrity
checking on PDS4 collection and bundle
membership.
The pds4.label and pds4.folder values correspond
to the default behavior for individual labels and
directories. The pds3.volume option is provided for
validating PDS3 volumes being delivered by
grandfathered pipelines and thus will not be
discussed further here. Note that it is not an error to
specify this option more than once, but only the last
value specified will have any effect.
• There is no reason to ever specify pds4.label. It

is the default for single labels anyway, and
specifying it for a directory is a fatal error.

• Similarly, there is no reason to ever
specify pds.folder. It is the default for
directories, and specifying it for a single label is
a fatal error. It is also the baseline for validation
of collection and bundles.

• Specifying pds4.collection for a collection
directory (not the collection label) performs
referential integrity on the collection inventory list
to ensure all member products are present and
accounted for, and also checks for restricted and
prohibited file names as specified in Section 6C
of the Standards Reference.

• Specifying pds4.bundle for a bundle directory
(not the bundle label) applies
the pds4.collection validation to all
subdirectories and checks referential integrity for
bundle members.

Note: In addition to the checks listed, the pds4.collection and pds4.bundle values also
cause validate to flag as errors file and directory names that do not conform to
the optional specifications in section 2B of the Standards Reference. You should confirm
delivery formats and naming conventions with the PDS node receiving your data prior to
delivery (typically as part of your Data Management Plan or Archive Plan review). If you opt to
use different conventions than the ones listed in section 2B, the "errors" flagged with respect
to required file and directory names from this section can be ignored.

Configuration File
You can create a configuration file to specify options rather than (or in addition to) supplying them on
the command line. This is particularly useful for providing schema locations, as you might otherwise
do with the -schema and -schematron options. Note that options provided on the command line will
override options in the configuration file if and only if the -c option comes before the command line
option intended to override it.

The format and content of the configuration file is described on the Validate Tool Configuration File
page.

Common Error Messages
These are error messages generated by the tool itself, as opposed to the validation errors the tool
might report.

null

-M
--checksum-manifest checksum file

Use this option to provide a list of MD5 checksums
for integrity checking of label and data files. The file
should consist only of checksum lines with the MD5
checksum first and the file name (with path)
following. This is the format output by, for example,
the linux md5sum routine. Typically, path names in
checksum files are relative to the root directory
passed to the checksum generation program. If the
paths in the file are relative to the root of the
collection or bundle, then this option alone will likely
be sufficient. If you encounter multiple errors
saying "No checksum found in manifest" for files that
should have been found, then you will likely need to
use the -base-path option (following) to provide
explicit path information.

-B
--base-path absolute path

Use this option to provide an absolute path to
prepend to the file specifications in the checksum
manifest file to resolve reference issues locating the
files. This option has no effect if the -checksum-
manifest option is not also present.

Option Argument Notes

-c
--config config file

Use this option to specify a file containing configuration
directives for running validate. You can include path
information in the file specification if needed.

Note: It is an error to try to list multiple configuration files for this option, but it is not an error to
use the -config option multiple times. When you do that, the options from the two files are
combined - somehow. This is an off-label use of configuration files that should probably be
avoided.

If the only word in your output listing or report file is the string "null", you've got an error in your
command line somewhere. Check spelling (no truncation of long-form options is allowed) and case
of options and their arguments to find the culprit.

ERROR Uncaught exception while validating: Input file is not a directory: ...
This is usually caused by a typo in your command (or configuration file). Look at the name of the
"file" for a clue. This can be caused by a mistyped long option as well as mistyped file or directory
names.

ERROR line [number, character]: src-resolved: Cannot resolve the name '[name]' to a(n)
'element declaration' component
There are some variations on this theme, but the "Cannot resolve" message means that a schema
(XSD) file you attempted to reference directly via command line or configuration file options, or
perhaps indirectly through a label schemaLocation when using the -force option, could not be found
and read. Check for typos in the options, or in the case of -force, the label file that generated the
error.

ERROR No checksum found in the manifest for 'file:...'
This message results when validate cannot find a file listed in the checksum manifest. If you are not
using the -base-path option, you may need to. If you are, check it for typos, and for overlapping path
elements with what is in the manifest file filenames.

	Format
	Default Behavior
	Command Line Options
	Program Information
	Selecting What to Validate
	Output Control
	Specifying Schemas
	Additional Validation
	Configuration File

	Common Error Messages

