
XML Basics 
Following are some things that you should be aware of before you embark on creating your first 
PDS4 XML label. This is especially true if you are coming from the PDS3 world, where things like 
case and keyword order were largely irrelevant; or the HTML world, where closing tags can be 
treated fairly cavalierly. 

Reading and Editing an XML File 
If you've never worked with XML before, simply looking at XML can be a bit intimidating - there's a lot 
of syntax there to read around. Until you get used to the syntax, and even afterwards, it can be 
helpful to look at XML files in a program that provides some value-added display capabilities. The 
commonly available options are: 

• XML-aware editors. Editors like Eclipse and oXygen, which support XML and schema 
markup and validation, can offer not only syntax highlighting, but also alternate views of the 
content - like document trees or expandable graphic layouts. This is your best option if you 
want to do anything other than browse casually through the file. 

• Editors with syntax highlighting. If you have a favorite program editor that provides color 
syntax highlighting, there's a good chance the more recent updates will include options for 
XML highlighting and possibly more. UltraEdit, for example, has an option for showing the 
document as a tree without the XML markup. 

• Web Browsers. All the major web browsers (Google Chrome, Internet Explorer, Firefox, and 
Safari, for example) can display XML files with syntax highlighting and the option of 
collapsing/expanding code blocks. For Chrome, IE, and Firefox, all you have to do is open 
the file with the browser. For Safari, you might need to turn on the Development menu first - 
open your Preferences menu, select the Advanced tab, and check the Show Development 
Menu in the Menu Bar box. 
If your browser or version doesn't seem to be doing the job (that is, you get a mostly blank 
page, or you get a page that just looks like a solid block of unformatted text), try the "View 
Source" option of your browser. 

• Browser Plug-ins. If your browser allows you to add extended functions via plug-ins, 
extensions, or apps, try browsing those collections for XML viewers. As of this writing, the 
selection is limited but growing. The best one I've personally tried so far for browsing through 
PDS4 labels is the "XV - XML Viewer" extension available for the Google Chrome browser. If 
you've come across a particularly good example, please let us know. 

XML Syntax 
Case Sensitivity 
XML is case-sensitive: <Begin>, <begin>, and <BEGIN> are all different tags to an XML parser. 
Notwithstanding, if you are defining new tags (as you do when you create a local data dictionary) 
you should never use case alone to distinguish two tags. 

XML Tags Must Be Closed 
Unlike HTML, all XML tags must be closed. So this is not valid: 
<start_time>2014-07-04T10:00:00 



<stop_time>2014-07-04T21:00:00 

XML Tags Must Be Closed in Order 
All XML tags must be opened and closed in strict Last Opened - First Closed order. That is, all tags 
opened inside one tag must be closed before you close the outside tag. So this is valid: 
<em>This is <strong>OK</strong></em> 

But this is not: 
<em>This is <strong>NOT VALID</em></strong> 

Character Restrictions 
You may not use the greater than (>), less than (<), or ampersand (&) characters in your text fields - 
an XML parser will always assume these begin a tag or an entity reference (a stand-in for a 
character that is not available for one reason or another). Instead, you must use the entity 
references for these characters: 

Use "&lt;" for the '<' character. 
Use "&gt;" for the '>' character. 
Use "&amp;" for the '&' characer. 

You must make these substitutions all the time in every text field where you want to use these 
characters. So, for example, in a table field description of a PDS4 label you might see something like 
this: 

Because this will cause a syntax error: 

When you are writing code to deal with XML text fields, you may need to remember to decode the 
entity references before proceeding - depending on the text handling of the XML parser you are 
using. 

End-of-Line Characters 
XML does not require a specific form of line break, so you can use whatever is convenient (carriage 
return, linefeed, or a combination) when creating an XML file. XML parsers will do the right thing 
largely because they're parsing on tags, not records - so whatever line break you are using is just 
whitespace to XML. 

When writing code to process XML files, if you are using a conformant XML parser all line breaks will 
be normalized to linefeed characters (unless you specifically prevent this). If you are not using a 
conformant parser, you will need to read the documentation to determine what whitespace 

<description> 
    This field is set to "-999" when the observed counts are &gt; 
10000. 
</description> 

<description> 
    This field is set to "-999" when the observed counts are > 
10000. 
</description> 



processing it does on end-of-line characters, if any. In any event, you will need to worry about 
appropriate output carriage control for those tags that should preserve whitespace in their values 
(mainly description, note, and comment fields), and modify the line breaks accordingly when that 
matters. 

XML Schema (XSD) 
XML Schema is Strictly Ordered 
The XML Schema definition language (XSD) is strictly ordered. That is, attributes and 
classes must appear in the order in which they are defined in the XSD file. While it is possible to 
circumvent this, it is difficult and it can have a serious negative impact on validation. So unless 
otherwise indicated, you should assume that you must put classes and attributes in the order 
illustrated. 

Note that while schema-aware editors can tell you whether any particular class or attribute is a valid 
choice, they tend to sort the options alphabetically - so it can be difficult to guess which order 
attributes should be in for a large class. If you get an error message that an attribute is not valid at a 
particular place when you know the attribute does belong in the class, then it is almost certainly an 
ordering error. Check the XSD or the PDS4 Information Model for correct ordering. 

XML Primer for PDS4 
This page lists the XML standards applicable to PDS4 labels and processing. It provides links to the 
standards themselves, and some brief overview points about each. 

The XML development effort has a design philosophy that is modular in approach. Standards are 
developed to be useful across contexts, and when a part of a larger standard appears to have 
broader application than the original context, it is split off into a separate standard for development, 
so that later work can reference an existing standard and avoid re-defining the wheel. That is why, 
for example, the Namespaces in XML standard is not just part of the XML 1.0 standard - because 
the concept of namespace is also applicable in schema files, catalog files, and other types 
applications. 

As a side-effect, though, it seems like you have to know half a dozen different standards to get 
anything done in XML - thus this summary page. 

XML 
XML has two official (that is, W3C Recommendation) versions: 

• XML 1.0: http://www.w3.org/TR/REC-xml/ 
• XML 1.1: http://www.w3.org/TR/xml11/ 

Overview 
The XML Standard defines the overall syntax for XML files, which are called documents by the XML 
Standard - that is, PDS4 labels are XML documents. The XML Standard covers the following topics 
relevant to PDS4 labels: 

• Syntax for elements and attributes - the used of '<' and '>' around tag names; the 
requirement for closing tags; comment and processing instruction format; etc. 

• Character set - Allowed characters for names and content (with reference to the Unicode 
standard) 

• The required XML declaration that must appear as the first line of any XML document. 

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xml11/


It also includes syntax for writing Document Type Definitions (DTDs), which are used to define the 
element and attribute names and format constraints. In PDS4, however, we will be using XML 
Schema to do that rather than DTDs. 

The XML standard does not define the element names themselves. Any application or set of 
applications planning to make use of XML must either define its own set of element names and 
associated data types, or use one of the publicly defined systems (like DocBook, which is an XML 
mark-up language used for creating books and articles). 

Version 1.0 vs. Version 1.1 
For most purposes within the PDS, the distinction between version 1.0 and 1.1 of the XML standard 
can be ignored. The major differences are: 

• 1.1 expands the allowed character set for names to accommodate expansion of the Unicode 
standard since version 1.0. 

• 1.1 has looser character constraints on names, in anticipation of future expansion of the 
Unicode standard. Where version 1.0 prohibited everything that wasn't explicitly allowed, 
version 1.1 allows anything that is not explicitly prohibited. 

• 1.1 expands line-end conventions to include Unicode conventions (and a couple others) 
• 1.1 defines "full normalization" constraints. These only come into play in the US when 

working with documents converted from word processing environments where typographic 
ligatures or letters with diacritical marks might be transcoded as either a single Unicode 
character or a sequence of the individual characters that must be used to compose the final 
character. If you don't know what that means and you want to, try this Wikipedia article 
on "Unicode equivalence" as a starting point. 

While that last point is not likely to come up in a PDS4 label context in the US, it may be relevant to 
international organizations looking to adopt PDS4 standards and tools for local use. In this case, it 
may well be worth the effort to ensure that all software used is working to the XML 1.1 standard. 

 

XML Schema 
The XML Schema Definition Language (XSD) has two official (W3C Recommendation) versions, 
each of which comes in two parts: 

• XML Schema Definition Language 1.0: 
• Part 1: Structures 
• Part 2: Datatypes 

The 1.0 version also has an associated Primer, which should be largely applicable to both versions. 
• XML Schema Definition Language 1.1: 
• Part 1: Structures 
• Part 2: Datatypes 

Overview 
XML Schema Definition Language (XSD) describes an XML language that can be used to define 
elements, attributes, and content constraints for a set of XML documents. With XSD you can 

http://docbook.org/
http://en.wikipedia.org/wiki/Unicode_equivalence
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/


effectively create a new XML-based "language" by defining element and attribute names and making 
constraints and requirements on content and usage. 

XSD is used by PDS to define the structure of PDS4 labels and enforce content requirements. If you 
are creating or editing PDS4 labels, you will need to know how to reference XSD files from the 
labels; how to use the XSD files to validate your labels; and at some point you will probably want to 
know how to get structural information out of XSD files so you can see what you can optionally 
include in your labels. You will probably not have to write your own schema files, unless you really 
want to. 

Version 1.0 vs. Version 1.1 
Most of the differences between XSD 1.0 and XSD 1.1 would not be visible to an end-user who is 
simple referencing schemas for writing and validating labels. Because of a number of improvements 
to validation processing, if you have the option of using XSD 1.1 validation (it might be called "XML 
Schema 1.1" in your software), it's probably a good idea to use it. 

 

Namespaces in XML 
The full W3C Recommendation is available here: 

• Namespaces in XML 1.1 

Overview 
The namespaces standard defines how namespaces are referenced within XML documents. This is 
the standard that reserves the "xmlns" attribute for defining short-hand prefixes for namespaces 
within XML documents, It also specifies that namespace identifiers must follow the Internationalized 
Resource Identifiers (IRI) format. PDS uses Uniform Resource Locators (URLs - a subset of IRIs) for 
namespace identifiers within the PDS system. 

Version 1.0 vs. Version 1.1 
There is an earlier version of the namespace standard, but for PDS purposes the differences are not 
significant, apart from errata, the substantive changes from 1.0 to 1.1 are: 

• Version 1.1 provides a way to un-declare prefixes. 
• Version 1.1 defines namespace names as being IRIs, rather than URIs. 

PDS applications are unlikely to ever be so complex as to require un-defining namespace prefixes, 
and PDS has made a policy decision to use URIs rather than IRIs (the character set constraints are 
tighter for URIs than IRIs). So Version 1.0 of the namespace standard should be completely 
sufficient for PDS work. 

 

Other X-standards 
In keeping with the modular standards concept, there are other XML standards that are being used 
and that you might hear referenced, but which you may not have to worry about unless and until you 
are doing some detailed PDS4 development or validation work that requires them. These include: 

XML Catalog 

http://www.w3.org/TR/xml-names11/
http://www.rfc-editor.org/rfc/rfc3987.txt
http://www.rfc-editor.org/rfc/rfc3987.txt


This W3C recommendation defines a special catalog file format for use in translating logical 
references, like URIs, to physical locations. It also defines the method for resolving references 
according to the information in the catalog file. If you do any serious work with PDS4 labels, you 
will likely set up an XML catalog file to resolve schema references. You can read the 
Understanding XML Catalog Files page for some history, some explanation, and some specific 
advice on the likely most useful parts of the standard for PDS work. 

XPath 
This W3C recommendation provides syntax for selecting specific tags ("nodes" in the XML-
speak of the standard) either by their syntactic relationship to other parts of the document or by 
their values. This syntax is used in Schematron files to find and test various PDS attributes for 
conditions that are difficult or impossible to dictate via XSD definitions, and also for defining and 
validating enumerated value lists for attributes that are restricted to specific values. If you are 
planning to write your own Schematron rules, you will need to become familiar with this standard. 

XInclude 
This W3C recommendation formally defines a way to include the contents of an external file into 
an XML file being processed (that is, the traditional programmers "include" concept). This will 
probably come up in PDS4 eventually, but not for the early builds. 

In all these cases, your friendly, neighborhood PDS node consultant should be able to provide you 
with examples or templates and additional advice. 

Understanding XML Catalog Files 
XML catalog files use some terminology that can be fairly opaque to those new to XML. Following is 
an explanation of the key terms used in the XML Catalog standard and their relevance to the PDS4 
context. 

Identifiers: Public vs. System 
The concepts of public identifier and system identifier predate XML. Both concepts were key in the 
pre-OASIS world of SGML (the ancestor of XML). These identifiers allowed a document author to 
reference a file external to his own document. Typically, this would be a Document Type Definition 
(DTD). DTDs predate schemas, but do the same sort of job - defining the valid content of an SGML 
file. Standard DTDs were developed to provide interoperability between systems. Perhaps the most 
widely-known DTD is the DTD that defines the DocBook documentation system. 

 
At this stage of the game, the distinction between public and system identifiers was clear and simple: 
The public identifier was a globally unique, permanent and invariant identifier assigned to a 
resource, like the DocBook DTD. The format of the public identifier was defined as part of the ISO 
8879 (SGML) standard as the Formal Public Identifiers (FPIs) format, and there was (presumably 
still is) at least one registration authority to assign namespaces to insure that unique FPIs can be 
formulated by diverse organizations. So the public identifier was clearly a logical identification of a 
resource. 

 
In this regime, the system identifier was always a physical location - a reference to a file on disk, for 
example. The SGML standard required that at least one of the two identifiers was present, but did 
not require both. 

Enter Catalog Files 

https://pds.nasa.gov/datastandards/training/documents/Understanding%20XML%20Catalog%20Files.pdf


At this point, the public identifier was a logical reference that could not easily be resolved, but at 
least it was transportable, unlike the system identifier. To address this problem, the SGML Open 
project, which eventually became OASIS, developed the first catalog-type standard (OASIS 
Technical Resolution 9401:1997) to map public identifiers to system identifiers in an external 
("catalog") file, which could be referenced by applications. 

Now, in this pre-XML world, this was a pretty straightforward task. The public identifier was always a 
logical reference, and the system identifier was always a physical reference to a locally accessible 
file. So a DocBook author, for example, could include both types of identifier in his source files as he 
was preparing them, and when he sent them out into the world the receivers could set their 
applications to ignore the system identifiers in the document and instead translate the public 
identifiers using their own catalog files. In other words, the application could choose whether 
the public or system identifiers should be "preferred" - a term that will come back later with much 
reduced significance for XML. 

Time Passes... 
SGML begat XML, the SGML Open group became OASIS Open, and URIs have largely supplanted 
FPIs. In XML documents, the public identifier is optional, while the system identifier is usually 
required (to identify things like name spaces and import files). But in XML, these references are also 
required to be URIs, which are themselves logical pointers. So in the XML regime, the system 
identifier does not point to a physical location. 

OK, it might point to a physical location - some URIs do. But in general URIs are not required to be 
resolvable in themselves, so you can't count on someone else's URI being directly resolvable to a 
physical file. Which is why XML documents may include schemaLocation attributes - to indicate the 
physical location of the files needed to define name spaces or to be imported into the current 
document. 

XML Catalog Standard 
OASIS rolled up its sleeves and beefed up the early mapping standard to become the XML Catalog 
1.0 standard, to address both SGML and XML mapping needs. The catalog file maps the values 
of public identifiers, system identifiers and URIs generally to (other) URIs that actually do resolve to 
a physical file. It will do this for anything your application considers to be an external id (either 
a public identifier or a system identifier), as well as for any other URIs it encounters. A few things to 
keep in mind when reading/writing catalog entries: 

• The XML Catalog standard explicitly states that the first matching line is the one applied - 
anything else will be ignored. When you are writing your translation elements, put the most 
specific matches first, and the more general matches later. For example, if you are trying to 
match a URI that ends in a file name, put that element before any element that matches just 
the path. 

• Applications can choose to be more or less picky about URI formatting in your catalog files. 
According to the XML Catalog standard, catalog processors must normalize URIs before 
running a comparison, but some processors may be more liberal in what they'll recognize 
and translate for you than others if, for example, you use local OS path syntax rather than 
the Unix-like syntax technically required by the "file:" protocol. The oXygen editor, for 
example, is fairly lenient about URI formatting in the catalog file.  Other applications may not 
be so forgiving. 

• One of the consequences of the evolution from DTD and external (public/system) identifiers 
to XML and URIs is that the distinction between public and system identifiers is largely moot. 
The external identifiers in our PDS XML documents - the references to the XML Schema and 

http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/specs/a401.htm


XML Schema-Instance name spaces, for example - are not required to have system 
identifiers (the definitions are "built-in", as it were). Since everything else falls under the 
"URI" rubric, our XML Catalog files tend to contain only URI-type mappings. 

• As a result, applications may be more or less lenient about discriminating between public/
system identifiers and general URIs when matching strings and applying mappings. So for 
some applications, using a system identifier mapping rather than a URI mapping will still 
translate all occurrences of the matching URI, even if it technically isn't being used as 
a system identifier.  

• It is possible to write complex catalog files, with elements for including additional files or 
branching from one catalog file to another. Most PDS data preparers and users do not need 
any of those complications. The standard set-up and a few simple URI mapping parameters 
will do the job for most of us. 

• Catalog files are not transportable. They are the epitome of environment-specific 
configuration. When following someone else's example, be particularly careful about the file 
specification URIs you will be translating to - they will depend critically on your local file 
system. 

XML Catalog File Elements 
Here is what you need to know to write or edit an XML Catalog file. 

Every catalog file will begin with the usual <?xml> tag and possibly a <!DOCTYPE> declaration 
(some applications require it, some forbid it), followed by the <catalog> tag which begins the catalog 
information proper and identifies the namespace associated with the XML Catalog standard. These 
can be copied verbatim from any valid catalog file; if you use an XML Catalog generation tool, these 
will be provided for you. The <catalog> tag may have a prefer attribute with a value of 
either "public" or "system". As explained above, for PDS purposes this preference setting is 
meaningless – we will only be mapping URIs, not external identifiers. 

Between the <catalog> and </catalog> tags, these are the tags that will likely be most useful and 
most common in catalog files supporting PDS labels: 

<uri name="name_string" uri="physical_reference"/> 
The <uri> element does a straight one-to-one mapping from the URI given as the value of "name" to 
the URI given as the value of "uri". So name_string is what appears in the XML file, 
and physical_reference is the actual location of the file that contains the answer (the namespace 
definition, the XML fragment to be included, etc.). This must be resolvable. For most of our users 
this will resolve to a file on the local file system, so it will begin with the string "file:///". It could also 
resolve to a web location, in which case it will likely begin with something like "http:" or "ftp:". The 
URIs should both be URI-encoded, for safety. 
<rewriteURI uriStartString="old_prefix" rewritePrefix="new_prefix"/> 
The <rewriteURI> element can be used to map many URIs at once, based on a common initial 
substring in those URIs. For example, say you have reproduced the PDS schema directories in a 
local repository. You could then map all your PDS namespace references at once by replacing the 
"http://pds.nasa.gov/pds4" part of every namespace URI with a reference to the root directory of your 
schema repository. As with the <uri> element, the URI created must be resolvable. Old_prefix is the 
prefix as it appears in the XML file; new_prefix is the replacement that turns that string into a 
resolvable reference. 
<uriSuffix uriSuffix="uri_suffix" uri="physical_reference"/> 
The <uriSuffix> element matches based on the end of the URI string - so if the URI in the XML 
document ends in uri_suffix, then the entire URI is mapped to the physical_reference (which must, of 



course, be resolvable). Note that this is not at all like <rewriteURI>, which effectively does a string 
substitution on the URI from the XML document. <uriSuffix> matches based on the suffix only, but 
then expects to map this to a complete, new URI. (One of the few differences between the XML 
Catalog 1.0 and 1.1 standards is the addition of this element in the 1.1 standard.) 
<delegateURI uriStartString="prefix_string" catalog="physical_reference"/> 
The <delegateURI> element lets you hand off URI translation for a set of URIs to a different catalog 
file. This can be useful if you are working in a fairly complex environment where some of your URI 
translations are stable and some aren't (or some are in production mode and others in 
development). This could also be used to set up a hierarchy of public and private XML catalogs. 
When a URI in the XML document starts with the prefix_string, the URI will be immediately handed 
off to the catalog file indicated by the physical_reference for processing. (Note, though, that the 
catalog processing will stop at the first match encountered, so take care with where you locate your 
delegate element.) 

 
There are analogous elements to the above for mapping public identifiers and system identifiers, as 
well as a <group> element for providing default preferences and base URIs for these elements, and 
a <nextCatalog> element for explicitly passing control to another catalog file (rather than letting your 
application work through a predefined list). In addition, all the elements listed above will take 
an xml:base attribute to specify a base URI, so that relative URIs can be turned into absolute URIs.  
For most PDS uses, where all required URIs are also required to be absolute and the public/system 
preference is not applicable, these are not necessary. If you think you might need or want them, read 
the standard carefully and try it. 

Some Simple Examples 
Following are some simple XML Catalog files for a couple of common scenarios. Note that these all 
contain both the DOCTYPE reference and the catalog namespace reference 
("urn:oasis:names:tc:entity:xmlns:xml:catalog"). Some PDS4 tools may choke on 
the DOCTYPE directive; it can be removed as long as the namespace reference remains in 
the <catalog> statement. 

rewriteURI 
This catalog file uses a single rewriteURI statement to map all PDS4 namespace schema references 
to a copy of the schema tree on a local (NFS-mounted) directory: 

  <?xml version="1.0" encoding="UTF-8"?> 
  <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd"> 
  <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"> 
    <rewriteURI uriStartString="http://pds.nasa.gov/pds4"  
                 rewritePrefix="file:///n/sbnops/lcltools/schema"/> 
  </catalog> 

So, for example, a reference to the schema URI "httpd://pds.nasa.gov/pds4/pds/v1/
PDS4_PDS_1301.xsd" will be translated to the local file reference "/n/sbnops/lcltools/schema/pds/v1/
PDS4_PDS_1301.xsd". 



uri 
This catalog file adds uri statements before the rewriteURI statement to catch references to mission 
(EPOXI) schema files still in local development. The uri statements have to come first because the 
catalog processor will stop with the first statement that matches - so in this case if 
the rewriteURI statement came first, the processor would never make it past there. 

  <?xml version="1.0" encoding="UTF-8"?> 
  <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-open.org/
committees/entity/release/1.1/catalog.dtd"> 
  <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"> 
    <uri name="http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.xsd" 
          uri="file:///home/raugh/Oxygen/epoxiDD/epoxi_draft.xsd"/> 
    <uri name="http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.sch" 
          uri="file:///home/raugh/Oxygen/epoxiDD/epoxi_draft.sch"/> 
    <rewriteURI uriStartString="http://pds.nasa.gov/pds4" 
                 rewritePrefix="file:///n/sbnops/lcltools/schema"/> 
  </catalog> 
  

The uri statement replaces the entire matched name with the associated URI value, so the string 
"http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.sch", for example, will be replaced by the 
reference to the local file "/home/raugh/Oxygen/epoxiDD/epoxi_draft.sch". 

delegateURI 
Alternately, if you are working with several mission dictionaries in active development scattered 
across your disc space or network, you might want to use a catalog file specifically to handle the 
mission dictionaries and use your local schema tree for the rest. In that case, you would use 
a delegateURI statement to trap references to all mission namespaces and pass them off to a 
different catalog file, while the rest fall through to be handled by the rewriteURI: 

  <?xml version="1.0" encoding="UTF-8"?> 
  <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd"> 
  <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"> 
    <delegateURI uriStartString="http://pds.nasa.gov/pds4/mission" 
                 catalog="file:///home/raugh/Oxygen/XMLCatalogs/mission_schemas.xml"/> 
    <rewriteURI uriStartString="http://pds.nasa.gov/pds4" 
                 rewritePrefix="file:///n/sbnops/lcltools/schema"/> 
  </catalog> 

 
In this case, all references beginning with "http://pds.nasa.gov/pds4/mission" will be passed to the 
"mission_schemas.xml" catalog file for resolution. Say that catalog file looks like this: 

Contents of mission_schemas.xml: 

  <?xml version="1.0" encoding="UTF-8"?> 



  <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-
open.org/committees/entity/release/1.1/catalog.dtd"> 
  <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"> 
    <rewriteURI uriStartString="http://pds.nasa.gov/pds4/mission/epoxi/v1" 
                 rewritePrefix="file:///home/raugh/Oxygen/epoxiDD"/> 
    <rewriteURI uriStartString="http://pds.nasa.gov/pds4" 
                 rewritePrefix="file:///n/sbnops/lcltools/schema"/> 
  </catalog> 

 
Given these two catalog files (in their proper places, of course): 

• a reference to "http://pds.nasa.gov/pds4/mission/epoxi/v1/EPOXI_1-0.xsd" will be passed 
to mission_schemas.xml, which will return a new value of "file:///home/raugh/Oxygen/epoxiDD/
EXPOXI_1-0.xsd"; 

• a reference to "http://pds.nasa.gov/pds4/mission/di/v1/DEEP_IMPACT_1-1.xsd" will also be 
passed to mission_schemas.xml, but will return a new value of "file:///n/sbnops/lcltools/
schema/mission/di/v1/DEEP_IMPACT_1-1.xsd"; and 

• a reference to "http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1300.xsd" will be handled by the 
first catalog file, and will return a value of "file:///n/sbnops/lcltools/schema/pds/v1/
PDS4_PDS_1300.xsd". 

Anatomy of the XML Prolog 
This page was updated in June 2016 with information on the schematypens attribute. 

The prolog of an XML document comprises everything from the start of the file to the document root 
tag. It may contain the XML declaration, processing instructions, comments, and a document type 
definition. In XML 1.0, all these things are optional; in XML 1.1 the XML declaration is required. 

All PDS4 labels will contain both an XML declaration, required by PDS, as well as at least one 
processing instruction, as it is processing instructions that create the connections to the Schematron 
parts of namespace definitions. In fact, PDS4 labels will, in general, have one processing instruction 
for each PDS-controlled namespace referenced in the label. 

Example PDS4 Label Prolog 
Here's a sample prolog from an early prototype label that references the PDS4 core namespace, 
four discipline dictionaries, and a mission dictionary: 

   <?xml version="1.0" encoding="UTF-8"?> 
   <?xml-model href="http://pds.nasa.gov/pds4/pds/v1/PDS4_PDS_1201.sch" schematypens="http://
purl.oclc.org/dsdl/schematron"?> 
   <?xml-model href="http://pds.nasa.gov/pds4/disp/v1/PDS4_DISP_1100.sch" schematypens="http://
purl.oclc.org/dsdl/schematron"?> 
   <?xml-model href="http://pds.nasa.gov/pds4/sp/v1/PDS4_SP_1100.sch" schematypens="http://
purl.oclc.org/dsdl/schematron"?> 



   <?xml-model href="http://pds.nasa.gov/pds4/geom/v0/PDS4_GEOM_0520.sch" 
schematypens="http://purl.oclc.org/dsdl/schematron"?> 
   <?xml-model href="http://pds.nasa.gov/pds4/sbn/v0/sbnDD_0100.sch" schematypens="http://
purl.oclc.org/dsdl/schematron"?> 
   <?xml-model href="http://pds.nasa.gov/pds4/mission/epoxi/v0/epoxiDD_0100.sch" 
schematypens="http://purl.oclc.org/dsdl/schematron"?> 

We will examine this piece by piece. 

XML Declaration 
The first line is the XML declaration. It defines the XML standard version the label adheres to, and 
also defines the character set to be used. It has the format of a processing instruction, but very 
specific content requirements. It must be the very first thing in the file - not even white space may 
precede it. The XML declaration in our example prolog is: 

<?xml version="1.0" encoding="UTF-8"?> 

Here's what's going on: 

version="1.0" 
Version number is required in your XML declaration. This one declares that the label is following 
the W3C XML recommendation version 1.0. XML parsers will assume version 1.0 if they get a 
document without an XML declaration, but PDS will require that you include this statement not 
only for the XML version, but for the character set which follows it. For PDS4 purposes, the 
version could also equally well be "1.1". Also, you can use single quotes around the version 
number rather than double quotes, if you prefer. Which quote style you choose is not significant, 
and it can vary through the label. 

encoding="UTF-8" 
You must also specify which character encoding standard you will be using in the label. The 
default value stuck in here by various label generators will depend on your software. For PDS4 
purposes, you should be using "UTF-8". (The XML standard also requires that all conformant 
software implement UTF-8 support.) Simply changing the value in the XML declaration, however, 
will likely not cause your label editing software to start using a different encoding. You will need 
to search through your preferences to change that. 
The valid values than might appear here are defined by the IANA Official Names for Character 
Sets standard. Common values you might see include: 
• "ISO-8859-1" - This is the single-byte "Latin" codepage that maps the first 256 Unicode 

characters, which in turn include the 127 ASCII characters, to a single-byte value. It 
is not equivalent to either US-ASCII or UTF-8 for characters beyond the 127 ASCII 
characters. 

• "ISO-8859-x" - The related ISO-8859-* code pages contain characters from non-English 
alphabets in the higher (above 127) locations. There may be non-English characters in 
common among these code pages, but they will likely appear in different places in the 
different code pages. 

• "US-ASCII" - Once again, the first 127 bytes correspond to the ASCII character set, but 
anything beyond that may vary from other encodings, both in content and position. 
In all these cases, if you know there are no bytes with values greater than 127 then you can 
change the encoding value to "UTF-8". But if there are any higher-order characters in the file 

http://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml


you will need to convert the file to UTF-8 prior to archiving. (Some editors can do this as a 
"Save-as" function; some treat it as a font-related conversion.) 

In addition, you might also see a standalone declaration in an XML declaration. It would look like 
this: 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

A standalone value of "yes" would indicate that everything you need to know about what tags are 
used in the document is included inside the document. This will never happen in PDS4 labels (the 
markup is defined by the XSD and SCH schema files external to the label and referenced 
elsewhere), so if you see a standalone attribute in an XML declaration in a PDS4 label it needs to 
have a value of "no", which is also the default. You may see a value of "yes" in an XML file submitted 
as an archive product, since any XML files included in the archive will require some sort of formal 
document structure definition, and in some cases it might be convenient to include it as a Document 
Type Definition (DTD) inside the XML file rather than as a separate DTD or schema file. 

Finally, white space not inside quotes is not significant in your XML declaration. White space 
includes blanks, tabs, and line breaks. This would also be valid: 

   <?xml  
      version="1.0" 
      encoding="UTF-8" 
      standalone="no"?> 

xml-model Processing Instruction 
Processing instructions are delimited by the character pairs <? and ?> (same as for the XML 
declaration). The xml-model processing instruction is the focus of a relatively new (first proposed in 
2010; last revised 2012) W3C standard "Associating Schemas with XML Documents". It exists to 
provide an explicit link between an XML document and the schema that define(s) its valid content. 
The Schema Referencing in PDS4 Labels page provides complete documentation and instructions 
on formulating <?xml-model?> processing instructions for PDS4 labels. 

Here's what's going on: 

href="http://pds.nasa.gov/pds4/sbn/v0/sbnDD_0100.sch" 
The href attribute points to the location of a schema that defines the document content. In the 
PDS4 case, this will be a Schematron file (there are other types of schema files that could be 
referenced by an xml-model instruction, but PDS is not making use of them). Depending on your 
processing environment, the value of href could be a resolvable URL, a local file reference, or a 
URI that can be resolved to a physical file by XML Catalog processing. 

schematypens="http://purl.oclc.org/dsdl/schematron" 
The schematypens (read "schema type namespace") attribute indicates which schema language 
is used in the file pointed to by the href attribute. There are several different flavors of the 
Schematron standard, so for PDS4 archive files it is important to specify the ISO Schematron 
version. The URI in the examples above corresponds to the ISO Schematron URI. 

Only one schema reference can be made in each <?xml-model?> instruction, but you may have 
multiple instructions. A PDS4 label should contain one <?xml-model?> instruction for each dictionary 
used in the label. 

As with the XML declaration, white space is not significant between the parts of the xml-
model instruction. 

https://pds.nasa.gov/datastandards/training/documents/Schema%20Referencing%20in%20PDS4%20Labels.pdf


Other Prolog Elements 
The only other prolog components you should ever find in a PDS4 label would be white space (blank 
lines) and XML comments (delimited by <!-- and -->). Neither of these is required, of course. 

In XML document files inside the archive, you may find a Document Type Definition (DTD) 
declaration. A DTD declaration will open with "<!DOCTYPE", and may consist of a reference to an 
external definition (perhaps a standard DTD like the DocBook DTD), or a series of type definitions 
statements for elements, attributes, and all the other sorts of things that PDS uses XML Schema files 
to define. 

References 
Here are some links to the various standards mentioned above: 

• XML Catalogs V1.0, October 2002 
• XML Catalogs V1.1, October 2005 
• OASIS Technical Resolution 9401:1997 (pre-XML catalogs) 
• Extensible Markup Language (XML) 1.0 (Fifth Edition) 
• XML Schema Definition Language (XSD) 1.1 Part 1: Structures 

http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/specs/a401.htm
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema11-1/

